Skip to content
Publicly Available Published by De Gruyter December 12, 2010

Atomic weights of the elements 2009 (IUPAC Technical Report)

  • Michael E. Wieser and Tyler B. Coplen

The biennial review of atomic-weight determinations and other cognate data has resulted in changes for the standard atomic weights of 11 elements. Many atomic weights are not constants of nature, but depend upon the physical, chemical, and nuclear history of the material. The standard atomic weights of 10 elements having two or more stable isotopes have been changed to reflect this variability of atomic-weight values in natural terrestrial materials. To emphasize the fact that these standard atomic weights are not constants of nature, each atomic-weight value is expressed as an interval. The interval is used together with the symbol [a; b] to denote the set of atomic-weight values, Ar(E), of element E in normal materials for which aAr(E) ≤ b. The symbols a and b denote the bounds of the interval [a; b]. The revised atomic weight of hydrogen, Ar(H), is [1.007 84; 1.008 11] from 1.007 94(7); lithium, Ar(Li), is [6.938; 6.997] from 6.941(2); boron, Ar(B), is [10.806; 10.821] from 10.811(7); carbon, Ar(C), is [12.0096; 12.0116] from 12.0107(8); nitrogen, Ar(N), is [14.006 43; 14.007 28] from 14.0067(2); oxygen, Ar(O), is [15.999 03; 15.999 77] from 15.9994(3); silicon, Ar(Si), is [28.084; 28.086] from 28.0855(3); sulfur, Ar(S), is [32.059; 32.076] from 32.065(2); chlorine, Ar(Cl), is [35.446; 35.457] from 35.453(2); and thallium, Ar(Tl), is [204.382; 204.385] from 204.3833(2). This fundamental change in the presentation of the atomic weights represents an important advance in our knowledge of the natural world and underscores the significance and contributions of chemistry to the well-being of humankind in the International Year of Chemistry 2011. The standard atomic weight of germanium, Ar(Ge), was also changed to 72.63(1) from 72.64(1).


Project Year: 2007, Project Code: 2007-028-1-200


References

1 F. W. Clarke. “The Constants of Nature, Part 5. Recalculation of the Atomic Weights”, Smithsonian Misc. Publ. 441 i–xiv, 1–259 (1882).Search in Google Scholar

2 10.1021/ja02052a006, Sixth Report of the American Chemical Society Committee on Atomic Weights, J. Am. Chem. Soc.21, 200 (1898).Search in Google Scholar

3 10.1351/pac198052102349, N. E. Holden. Pure Appl. Chem.52, 2349 (1980).Search in Google Scholar

4 10.1351/PAC-REP-09-08-03, M. E. Wieser, M. Berglund. Pure Appl. Chem.81, 2131 (2009).Search in Google Scholar

5 10.1351/pac198456060695, H. S. Peiser, N. E. Holden, P. De Bièvre, I. L. Barnes, R. Hagemann, J. R. De Laeter, T. J. Murphy, E. Roth, M. Shima, H. G. Thode. Pure Appl. Chem.56, 695 (1984).Search in Google Scholar

6 10.1351/pac200375060683, J. R. De Laeter, J. K. Böhlke, P. De Bièvre, H. Hidaka, H. S. Peiser, K. J. R. Rosman, P. D. P. Taylor. Pure Appl. Chem.75, 683 (2003).Search in Google Scholar

7 10.1351/PAC-REP-10-09-14, M. Berglund, M. E. Wieser. Pure Appl. Chem.83, 397 (2011).Search in Google Scholar

8 IUPAC. Assessment of fundamental understanding of isotopic abundances and atomic weights of the chemical elements (IUPAC Project #2006-025-1-200 <http://www.iupac.org/web/ins/2006-025-1-200/>).Search in Google Scholar

9 10.1016/j.nuclphysa.2003.11.003, G. Audi, A. H. Wapstra, C. Thibault. Nucl. Phys. A729, 337 (2003).Search in Google Scholar

10 CIAAW. <http://www.ciaaw.org/atomic_weights9.htm>.Search in Google Scholar

11 CIAAW. <http://www.ciaaw.org/atomic_weights8.htm>.Search in Google Scholar

12 10.1351/pac196918040569, IUPAC. Pure Appl. Chem.18, 569 (1969).Search in Google Scholar

13 10.1007/BF00423634, P. De Bièvre. Z. Anal. Chem.264, 365 (1973).Search in Google Scholar

14 10.1351/pac200274101987, T. B. Coplen, J. K. Böhlke, P. De Bièvre, T. Ding, N. E. Holden, J. A. Hopple, H. R. Krouse, A. Lamberty, H. S. Peiser, K. M. Révész, S. E. Rieder, K. J. R. Rosman, E. Roth, P. D. P. Taylor, R. D. Vocke Jr., Y. K. Xiao. Pure Appl. Chem.74, 1987 (2002).Search in Google Scholar

15 T. B. Coplen, J. A. Hopple, J. K. Böhlke, H. S. Peiser, S. E. Rieder, H. R. Krouse, K. J. R. Rosman, T. Ding, R. D. Vocke, Jr., K. M. Révész, A. Lamberty, P. Taylor, P. De Bièvre. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents: U.S. Geological Survey Water-Resources Investigations Report 01-4222, p. 98, USGS, Washington, DC (2001).Search in Google Scholar

16 IUPAC. Evaluation of isotopic abundance variations in selected heavier elements (IUPAC Project # 2007-029-1-200 <http://www.iupac.org/web/ins/2007-029-1-200>).Search in Google Scholar

17 IUPAC. Evaluation of radiogenic abundance variations in selected elements (IUPAC Project #2009-023-1-200 <http://www.iupac.org/web/ins/2009-023-1-200>).Search in Google Scholar

18 10.1351/pac199466122423, IUPAC. Pure Appl. Chem.66, 2423 (1994).Search in Google Scholar

19 10.1016/0168-1176(92)80075-C, P. D. P. Taylor, R. Maeck, P. De Bièvre. Int. J. Mass Spectrom. Ion Processes121, 111 (1992).Search in Google Scholar

20 T.-L. Chang, W.-Li. Chin. Sci. Bull.35, 290 (1990).Search in Google Scholar

21 BIPM. International Vocabulary of Basic and General Terms in Metrology (VIM), 3rd ed., Bureau International des Poids et Mesure, Geneva (2008); <http://www.bipm.org/en/publications/guides/ vim.html>.Search in Google Scholar

22 10.1016/S0146-6380(00)00111-X, M. Elvert, E. Suess, J. Greinert, M. J. Whiticar. Org. Geochem.31, 1175 (2000).Search in Google Scholar

23 10.1351/pac199870010237, T. B. Coplen, H. S. Peiser. Pure Appl. Chem.70, 237 (1998).Search in Google Scholar

24a 10.1021/ja02101a011, F. W. Clarke. J. Am. Chem. Soc.16, 179 (1894).Search in Google Scholar

24b 10.1021/ja02158a005, F. W. Clarke. J. Am. Chem. Soc.17, 201 (1895).Search in Google Scholar

24c 10.1021/ja02089a001, F. W. Clarke. J. Am. Chem. Soc.18, 197 (1896).Search in Google Scholar

24d 10.1021/ja02079a001, F. W. Clarke. J. Am. Chem. Soc.19, 359 (1897).Search in Google Scholar

24e 10.1021/ja02065a001, F. W. Clarke. J. Am. Chem. Soc.20, 163 (1898).Search in Google Scholar

24f 10.1021/ja02052a006, F. W. Clarke. J. Am. Chem. Soc.21, 200 (1899).Search in Google Scholar

24g 10.1021/ja02040a003, F. W. Clarke. J. Am. Chem. Soc.22, 70 (1900).Search in Google Scholar

25 IUPAC. Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005 (the “Red Book”). Prepared for publication by N. Connelly, T. Damhus, R. M. Harshorn, RSC Publishing, Cambridge, UK (2005).Search in Google Scholar

26 R. M. Coveney Jr., E. D. Goebel, E. J. Zeller, G. A. M. Dreschhoff, E. E. Angino. Bull. Am. Assoc. Pet. Geol.71, 39 (1987).Search in Google Scholar

27 10.1021/jf00086a030, M. Butzenlechner, A. Rossmann, H.-L. Schmidt. J. Agric. Food Chem.37, 410 (1989).Search in Google Scholar

28 10.1351/pac198355071101, N. E. Holden, R. L. Martin. Pure Appl. Chem.55, 1101 (1983).Search in Google Scholar

29 10.1111/j.2153-3490.1970.tb00540.x, R. Hagemann, G. Nief, E. Roth. Tellus22, 712 (1970).Search in Google Scholar

30 10.1016/S0168-1176(97)00125-0, H. P. Qi, P. D. P. Taylor, M. Berglund, P. De Bièvre. Int. J. Mass Spectrom. Ion Processes171, 263 (1997).Search in Google Scholar

31 10.1021/ac9704669, H. P. Qi, T. B. Coplen, Q. Zh. Wang, Y. H. Wang. Anal. Chem.69, 4076 (1997).Search in Google Scholar

32 10.1351/pac198456060653, N. E. Holden, R. L. Martin. Pure Appl. Chem.56, 653 (1984).Search in Google Scholar

33 P. J. De Bièvre, G. H. Debus. Int. J. Mass Spectrom. Ion Phys.49, 265 (1983).Search in Google Scholar

34 G. Wang, Y. K. Xiao. Rock Miner. Anal.19, 169 (2000).Search in Google Scholar

35 10.1016/0016-7037(91)90375-F, A. Vengosh, A. R. Chivas, M. T. McCulloch, A. Starinsky, Y. Kolodny. Geochim. Cosmochim. Acta55, 2591 (1991).Search in Google Scholar

36 10.1351/pac199668122339, T. B. Coplen. Pure Appl. Chem.68, 2339 (1996).Search in Google Scholar

37 10.1016/0020-7381(69)80002-1, P. De Bièvre, G. H. Debus. Int. J. Mass Spectrom. Ion Phys.2, 15 (1969).Search in Google Scholar

38 10.1016/S0146-6380(00)00111-X, M. Elvert, E. Suess, J. Greinert, M. J. Whiticar. Org. Geochem.31, 1175 (2000).Search in Google Scholar

39 G. E. Claypool, C. N. Threlkeld, P. N. Mankiewicz, M. A. Arthur, T. F. Anderson. Initial Reports of the Deep Sea Drilling Project84, 683 (1995).Search in Google Scholar

40 10.1038/292327a0, E. Wada, R. Shibata, T. Torii. Nature292, 327 (1981).Search in Google Scholar

41 10.1351/pac200173040667, T. B. Coplen. Pure Appl. Chem.73, 667 (2001).Search in Google Scholar

42 10.1016/0016-7037(58)90082-6, G. Junk, H. J. Svec. Geochim. Cosmochim. Acta14, 234 (1958).Search in Google Scholar

43 10.1016/0012-821X(76)90115-1, P. Baertschi. Earth Planet. Sci. Lett.31, 341 (1976).Search in Google Scholar

44 W.-Li, D. Jin, T.-L. Chang. Kexue Tinboa33, 1610 (1988).Search in Google Scholar

45 10.1016/0012-821X(67)90047-7, L. Aldaz, S. Deutsch. Earth Planet. Sci. Lett.3, 267 (1967).Search in Google Scholar

46 10.1016/S0304-4203(96)00073-4, T. Yoshinari, M. A. Altabet, S. W. A. Naqvi, L. Codispoti, A. Jayakumar, M. Kuhland, A. Devol. Mar. Chem.56, 253 (1997).Search in Google Scholar

47 10.1351/pac197021010091, IUPAC. Pure Appl. Chem.21, 91 (1970).Search in Google Scholar

48 10.1038/nature03217, I. Basile-Doelsch, J. D. Meunier, C. Parron. Nature433, 399 (2005).Search in Google Scholar PubMed

49 10.1016/j.chemgeo.2005.01.018, T. P. Ding, G. R. Ma, M. X. Shui, D. F. Wan, R. H. Li. Chem. Geol.218, 41 (2005).Search in Google Scholar

50 10.1109/19.571916, R. Gonfiantini, P. De Bièvre, S. Valkiers, P. D. P. Taylor. IEEE Trans Instrum. Meas.46, 566 (1997).Search in Google Scholar

51 10.1351/pac197647010075, IUPAC. Pure Appl. Chem.47, 75 (1976).Search in Google Scholar

52 I. L. Barnes, L. J. Moore, L. A. Machlan, T. J. Murphy, W. R. Shields. J. Res. Natl. Bur. Stand. (U.S.)79A, 727 (1975).10.6028/jres.079A.029Search in Google Scholar

53 10.1016/S0016-7037(00)00579-2, M. D. Rudnicki, H. Elderfield, B. Spiro. Geochim. Cosmochim. Acta65, 777 (2001).Search in Google Scholar

54 10.1016/S0016-7037(01)00611-1, T. Ding, S. Valkiers, H. Kipphardt, R. Damen, P. De Bièvre, P. D. P. Taylor, R. Gonfiantini, H. R. Krouse. Geochim. Cosmochim. Acta65, 2433 (2001).Search in Google Scholar

55 10.1021/ac051360d, J. K. Böhlke, N. C. Sturchio, B. Gu, J. Horita, G. M. Brown, W. A. Jackson, J. Batista, P. B. Hatzinger. Anal. Chem.77, 7838 (2005).Search in Google Scholar

56 10.1016/0012-821X(95)00017-7, A. J. Magenheim, A. J. Spivack, P. J. Michael, J. M. Gieskes. Earth Planet. Sci. Lett.131, 427 (1995).Search in Google Scholar

57 10.1021/ja00868a001, W. R. Shields, T. J. Murphy, E. L. Garner, V. H. Dibeler. J. Am. Chem. Soc.84, 1519 (1961).Search in Google Scholar

58 10.1103/PhysRev.99.1737, A. Smakula, J. Kalnajs. Phys. Rev.99, 1737 (1955).Search in Google Scholar

59 10.1103/PhysRev.99.1744, A. Smakula, V. Sils. Phys. Rev.99, 1744 (1955).Search in Google Scholar

60 10.1103/PhysRev.99.1747, A. Smakula, J. Kalnajs, V. Sils. Phys. Rev.99, 1747 (1955).Search in Google Scholar

61 H. Kipphardt, S. Valkiers, F. Hendrickx, P. De Bièvre, P. D. P. Taylor, G. Tölg. Int. J. Mass Spectrom.189, 27 (1999).Search in Google Scholar

62 T.-L. Chang, W.-J. Li, G.-S Qiao, Q.-Y. Qian, Z.-Y Chu. Int. J. Mass Spectrom.189, 205 (1999).Search in Google Scholar

63 10.1016/S0012-821X(03)00703-9, M. Rehkämper, M. Frank, J. R. Hein, A. N. Halliday. Earth Planet. Sci. Lett.219, 77 (2004).Search in Google Scholar

64 10.1016/j.gca.2009.07.014, R. G. A. Baker, M. Rehkämper, T. K. Hinkley, S. G. Nielsen, J. P. Toutain. Geochim. Cosmochim. Acta73, 6340 (2009).Search in Google Scholar

65 10.1351/pac198658121677, IUPAC. Pure Appl. Chem.58, 1677 (1986).Search in Google Scholar

66 L. P. Dunstan, J. W. Gramlich, I. L. Barnes, W. C. Purdy. J. Res. Natl. Bur. Stand. (U.S.)85, 1 (1980).10.6028/jres.085.001Search in Google Scholar PubMed PubMed Central

Online erschienen: 2010-12-12
Erschienen im Druck: 2010-12-12

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-REP-10-09-14/html
Scroll to top button