Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T14:22:18.342Z Has data issue: false hasContentIssue false

Paramagnetic Fe3+: A Sensitive Probe for Disorder in Kaolinite

Published online by Cambridge University Press:  28 February 2024

J.-M. Gaite
Affiliation:
Centre de Recherche sur la Matière Divisée, Université d'Orléans-CNRS, Rue de Chartres-BP 6759 - 45067 Orleans Cedex 2, France
P. Ermakoff
Affiliation:
Centre de Recherche sur la Matière Divisée, Université d'Orléans-CNRS, Rue de Chartres-BP 6759 - 45067 Orleans Cedex 2, France
Th. Allard
Affiliation:
Laboratoire de Minéralogie-Cristallographie, Université de Paris VI et VII, 4, Place Jussieu - 75252 Paris Cedex 5, France
J.-P. Müller
Affiliation:
Laboratoire de Minéralogie-Cristallographie, Université de Paris VI et VII, 4, Place Jussieu - 75252 Paris Cedex 5, France ORSTOM, Département T.O.A. UR12, Géosciences de l'Environnement Tropical, 32 Avenue Henri Varagnat - 93143 Bondy Cedex, France

Abstract

The Fe3+ substituted for Al3+ at the 2 octahedral positions is one of the most common impurities in the kaolinite structure detected by electron paramagnetic resonance (EPR). Evidence has been provided for a relationship between the shape of EPR spectra for structural Fe and the structural disorder in kaolinite. It is proposed that the structural Fe be used as a sensitive probe for the degree of disorder of natural kaolinites. With this aim in view, an EPR disorder index (E) is defined from the width of selected EPR lines. Using reference kaolinites, it is shown that this index can account as well for long-range disorder detected by means of X-ray diffraction (XRD) as for local perturbations such as radiation-induced defects (RID). It is shown that the disorder observed through EPR has some points in common with the XRD-measured one. The influence on E of the presence of RID is shown by the study of artificially and naturally irradiated kaolinites.

Type
Research Article
Copyright
Copyright © 1997, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abragam, A. and Bleaney, B., 1970 Electron paramagnetic resonance of transition ions Oxford Clarendon Pr..Google Scholar
Allard, T. Muller, J.-P. Dran, J.-C. and Menager, M.-T., 1994 Radiation-induced paramagnetic defects in natural kaolinites: Alpha dosimetry with ion beam irradiation Phys Chem Mineral 21 8596 10.1007/BF00205219.CrossRefGoogle Scholar
Artioli, G. Bellotto, M. Gualtieri, A. and Pavese, A., 1995 Nature of structural disorder in natural kaolinites: A new model based on computer simulation of powder diffraction data and electrostatic energy calculation Clays Clay Miner 43 438445 10.1346/CCMN.1995.0430407.CrossRefGoogle Scholar
Bernas, H. Chaumont, J. Cottereau, E. Meunier, R. Traverse, A. Clerc, C. Kaitasov, O. Lalu, F. Le Du, D. Moroy, G. and Salomé, M., 1992 Progress report on Aramis, the 2MV tandem at Orsay Nucl Instrum Methods Phys Res B62 416420 10.1016/0168-583X(92)95268-V.CrossRefGoogle Scholar
Bish, D.L. and Von Dreele, R.B., 1989 Rietveld refinement of non-hydrogen atomic positions in kaolinite Clays Clay Miner 37 289296 10.1346/CCMN.1989.0370401.CrossRefGoogle Scholar
Bookin, A.S. Drits, V.A. Plançon, A. and Tchoubar, C., 1989 Stacking faults in the kaolin-group minerals in the light of real structural features Clays Clay Miner 37 297307 10.1346/CCMN.1989.0370402.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G., 1980 Crystal structures of clay minerals and their X-ray identification London Mineral Soc 495.CrossRefGoogle Scholar
Brindley, G.W. Kao, C.C. Harrison, J. Lipsicas, M. and Raythatha, R., 1986 Relation between structural disorder and other characteristics of kaolinites and dickites Clays Clay Miner 34 239249 10.1346/CCMN.1986.0340303.CrossRefGoogle Scholar
Cases, J.-M. Liétard, O. Yvon, J. and Delon, J.-F., 1982 Etude des propriétés cristallochimiques, morphologiques, superficielles de kaolinites désordonnées Bull Mineral 105 439455.Google Scholar
Clozel, B. Allard, T. and Muller, J.-P., 1994 Nature and stability of radiation-induced defects in natural kaolinites: New results and reappraisal of published works Clays Clay Miner 42 657666 10.1346/CCMN.1994.0420601.CrossRefGoogle Scholar
Clozel, B. G. J.-M. J.-P. Muller, 1995 Al-O-Al paramagnetic defects in kaolinite Phys Chem Mineral 22 351356 10.1007/BF00213331.CrossRefGoogle Scholar
Delineau, T. Allard, T M J-P Barres, O. and Yvon, J C J-M, 1994 FTIR reflectance vs. EPR studies of structural iron in kaolinites Clays Clay Miner 42 308320 10.1346/CCMN.1994.0420309.CrossRefGoogle Scholar
Gaite, J.-M. Ermakoff, P. and Muller, J.-P., 1993 Characterization and origin of two Fe3+ EPR spectra in kaolinite Phys Chem Mineral 20 242247 10.1007/BF00208137.CrossRefGoogle Scholar
Gaite, J.-M. and Michoulier, J., 1970 Application de la résonance paramagnétique électrique de l’ion Fe3+ à l’étude de la structure des feldspaths Bull Soc Fr Mineral 93 341356.Google Scholar
Giese, R.F. Jr. and Bailey, S.W., 1988 Kaolin minerals: Structures and stabilities Kaolin minerals: Structures and stabilities Washington, DC Mineral Soc Am 2966.Google Scholar
Hall, P.L., 1980 The application of spin resonance spectroscopy to studies of clay minerals Clay Miner 15 321351 10.1180/claymin.1980.015.4.01.CrossRefGoogle Scholar
Hinckley, D.N., 1963 Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina Clays Clay Miner 13 229235.Google Scholar
Ildefonse, P. Muller, J.P. Clozel, B. and Calas, G., 1990 Study of two alteration systems as natural analogues for radionuclide release and migration Eng Geol 29 413439 10.1016/0013-7952(90)90076-D.CrossRefGoogle Scholar
Ildefonse, P. Muller, J.-P. Clozel, B. and Calas, G., 1991 Record of past contact between altered rocks and radioactive solutions through radiation-induced defects in kaolinite Mater Res Soc Symp Proc 749756.CrossRefGoogle Scholar
Jones, J.P. Angel, B.R. and Hall, P.L., 1974 Electron spin resonance studies of doped synthetic kaolinites Clay Miner 10 257259 10.1180/claymin.1974.010.4.04.CrossRefGoogle Scholar
Leslie, B.W. Pearcy, E.C. and Prikryl, J.D., 1993 Oxidative alteration of uraninite at the Nopal I deposit, Mexico: Possible contaminant transport and source term constraints for the proposed repository at Yucca Mountain MRS Symp Proc 294 505512 10.1557/PROC-294-505.CrossRefGoogle Scholar
Liétard, O., 1977 Contribution à l’étude des propriétés physicochimiques cristallographiques et morphologiques des kaolins [Doctoral d’Etat] Spécialité Sciences Physiques Lorraine, France Institut National Polytechnique de Lorraine.Google Scholar
Meads, R.E. and Maiden, P.J., 1975 Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions Clay Miner 10 313345 10.1180/claymin.1975.010.5.01.CrossRefGoogle Scholar
Mestdagh, M.M. Herbillon, A.J. Rodrique, L. and Rouxhet, P.J., 1982 Evaluation du rôle du fer structural sur la cristallinité des kaolinites Bull Mineral 105 457466.Google Scholar
Mestdagh, M.M. Vielvoye, L. and Herbillon, A.J., 1980 Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content Clay Miner 15 113 10.1180/claymin.1980.015.1.01.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C. Jr., 1989 X-ray diffraction and the identification and analysis of clay minerals New York Oxford Univ Pr.Google Scholar
Muller, J.-P. Bocquier, G., Schultz, L.G. van Olphen, H. and Mumpton, F.A., 1987 Textural and mineralogical relationships between ferruginous nodules and surrounding clay matrices in a laterite from Cameroon Proc Int Clay Conf Denver, CO. Bloomington, IN Clay Miner Soc 186194.Google Scholar
Muller, J.-P. and Calas, G., 1993 Genetic significance of paramagnetic centers in kaolinites Boulder, CO Clay Miner Soc 261289.Google Scholar
Muller, J.-P. Clozel, B. Ildefonse, P. and Calas, G., 1992 Radiation-induced defects in kaolinite: Indirect assessment of radionuclide migration in the geosphere Appl Geochem 1 205216 10.1016/S0883-2927(09)80077-2.CrossRefGoogle Scholar
Muller, J.P. Ildefonse, P. and Calas, G., 1990 Paramagnetic defect centers in hydrothermal kaolinite from an altered tuff in the Nopal Uranium deposit, Chihuahua Mexico. Clays Clay Miner 38 600608 10.1346/CCMN.1990.0380605.CrossRefGoogle Scholar
Noble, F.R., 1971 A study of disorder in kaolinite Clay Miner 9 7181 10.1180/claymin.1971.009.1.05.CrossRefGoogle Scholar
Plançon, A. Giese, R.F. and Snyder, R., 1988 The Hinckley index for kaolinites Clay Miner 23 249260 10.1180/claymin.1988.023.3.02.CrossRefGoogle Scholar
Plancon, A. Giese, R.F. Jr Snyder, R. Drits, V.A. and Bookin, A.S., 1989 Stacking faults in the kaolin-group minerals: Defect structures of kaolinite Clays Clay Miner 37 203210 10.1346/CCMN.1989.0370302.CrossRefGoogle Scholar
Plançon, A. and Zacharie, C., 1990 An expert system for the structural characterization of kaolinites Clay Miner 25 249260 10.1180/claymin.1990.025.3.01.CrossRefGoogle Scholar
Schroeder, P.A. and Pruett, R.J., 1996 Fe ordering in kaolinite: Insights from 29Si and 27A1 MAS NMR spectroscopy Am Mineral 81 2638 10.2138/am-1996-1-204.CrossRefGoogle Scholar
Stone, W.E.E. and Torres-Sanchez, R.M., 1988 Nuclear magnetic resonance spectroscopy applied to minerals. Structural iron in kaolinites as viewed by proton magnetic resonance J Chem Soc, Faraday Trans 1 117132 10.1039/f19888400117.CrossRefGoogle Scholar
van Olphen, H. and Fripiat, J.J., 1979 Data Handbook for clay minerals and other non-metallic minerals Pergamon Pr .Google Scholar