Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T08:44:35.379Z Has data issue: false hasContentIssue false

A New Extraction Procedure for Simultaneous Quantitative Determination of Water-Soluble Metals in Reaction Products of Clays and Inorganic Salts

Published online by Cambridge University Press:  01 January 2024

Fernando G. Colina*
Affiliation:
Department of Chemical Engineering and Metallurgy, Universitat de Barcelona, Martí i Franquès 1-6, 08028 Barcelona, Spain
Santiago Esplugas
Affiliation:
Department of Chemical Engineering and Metallurgy, Universitat de Barcelona, Martí i Franquès 1-6, 08028 Barcelona, Spain
Jose Costa
Affiliation:
Department of Chemical Engineering and Metallurgy, Universitat de Barcelona, Martí i Franquès 1-6, 08028 Barcelona, Spain
*
*E-mail address of corresponding author: colina@angel.qui.ub.es

Abstract

Kaolin, a possible source of Al, may be reacted with inorganic acids or salts to form different Al salts that can be further processed to prepare metallic Al. Although the reaction of kaolin and acid in aqueous solution can be monitored by chemical analysis of Al, the Al salts must be extracted from any unreacted kaolinite. Also, the lixiviation of Ti or Fe species present in kaolin should be monitored. A simple extraction procedure is reported to determine, quickly and quantitatively, water-soluble Al, Ti and Fe metals present in products of reaction of kaolin (85 wt.% kaolinite, 12 wt.% mica, 2 wt.% feldspar, 1 wt.% quartz) with inorganic salts, such as sodium hydrogensulfate, using conventional glassware for the glass reaction tubes. Optimum results are obtained with 250 mL glass reaction tubes. The best operating conditions found for this piece of equipment are: (1) sample weight of 0.05 g, (2) lixiviation time of 1 h, and (3) lixiviating agent, 50 mL of an aqueous solution of pH = 1 H2SO4 at its boiling point. Comparisons are made with soxhlet extraction and beaker and magnetic stirring methods.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayer, G. Kahr, G. and Mueller-Vonmoos, M., (1982) Reactions of ammonium sulphates with kaolinite and other silicate and oxide minerals Clay Minerals 17 271283 10.1180/claymin.1982.017.3.01.CrossRefGoogle Scholar
Chung, F.H., (1974) Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix flushing method for quantitative multicomponent analysis Journal of Applied Crystallography 7 519525 10.1107/S0021889874010375.10.1107/S0021889874010375CrossRefGoogle Scholar
Colina, F.G., (1999) Procesos industriales de acondicionamiento de caolín para su utilización como materia prima en la síntesis de zeolita X Spain Department of Chemical Engineering and Metallurgy, Universitat de Barcelona 382 pp.Google Scholar
Davies, H., Dering, H.O. and Parker, T.W. (1945) Al2O3 from clay by an NH4 alum-NH3 process. U.S. Patent no. 2.375.977.Google Scholar
Dolcater, D.L. Syers, J.K. and Jackson, M.L., (1970) Titanium as free oxide and substituted forms in kaolinites and other soil minerals Clays and Clay Minerals 18 7179 10.1346/CCMN.1970.0180202.CrossRefGoogle Scholar
Fetterman, J.W. and Sun, S.C., (1963) Alumina extraction from a Pennsylvania diaspore clay by an ammonium sulfate process Alumina 1 333 349.Google Scholar
Ford, K.J.R., (1992) Leaching of fine and pelletised Natal kaolin using sulphuric acid Hydrometallurgy 29 109130 10.1016/0304-386X(92)90008-N.CrossRefGoogle Scholar
Fouda, M.F.R. Amin, R.S. and Abd-Elzaher, M.M., (1993) Characterization of products of interaction between kaolin ore and ammonium sulphate Journal of Chemical Technology and Biotechnology 56 195202 10.1002/jctb.280560213.10.1002/jctb.280560213CrossRefGoogle Scholar
Garcia-Clavel, M.E., Martínez-Lope, M.J. and Casais-Alvarez, M. T. (1979) Método de obtención de alúmina a partir de arcillas y silicatos alumínicos en general. Spanish Patent no. 482.881.Google Scholar
Garcia-Clavel, M.E., Martínez-Lope, M.J. and Casais-Alvarez, M.T. (1982) Method for obtaining alumina from clays. U.S. Patent no. 4.342.729.Google Scholar
Garcia-Clavel, M.E., Martínez-Lope, M.J. and Casais-Alvarez, M.T. (1983) Procedimiento continuo de obtención de compuestos de aluminio a partir de silicatos alumínicos y otros minerales de aluminio. Spanish Patent no. 522.398.Google Scholar
Garcia-Clavel, M.E., Martínez-Lope, M.J. and Casais-Alvarez, M. T. (1985) Método de solubilización de los componentes metálicos de los filosilicatos. Spanish Patent no. 545.690.Google Scholar
Heller-Kallai, L., (1978) Reactions of salts with kaolinite at elevated temperatures. I Clay Minerals 13 221235 10.1180/claymin.1978.013.2.09.CrossRefGoogle Scholar
Heller-Kallai, L. and Frenkel, M., (1979) Reactions of salts with kaolinite at elevated temperatures. II Developments in Sedimentology 27 629637 10.1016/S0070-4571(08)70762-3.10.1016/S0070-4571(08)70762-3CrossRefGoogle Scholar
Hinckley, D.N., (1963) Variability in crystallinity values among the kaolin deposits of the coastal plain of Georgia and South Carolina Clays and Clay Minerals 11 229235 10.1346/CCMN.1962.0110122.CrossRefGoogle Scholar
Hulbert, S.F. and Huff, D.E., (1970) Kinetics of alumina removal from a calcined kaolin with nitric, sulphuric and hydrochloric acids Clay Minerals 8 337345 10.1180/claymin.1970.008.3.11.CrossRefGoogle Scholar
Klevtsov, D.P. Logvinenko, V.A. Zolotovskii, B.P. Krivoruchko, O.P. and Buyanov, R.A., (1988) Kinetics of kaolinite dehydration and its dependence on mechanochemical activation Journal of Thermal Analysis 33 531535 10.1007/BF01913933.CrossRefGoogle Scholar
Malden, P.J. and Meads, R.E., (1967) Substitution by iron in kaolinite Nature 215 844846 10.1038/215844b0.CrossRefGoogle Scholar
Martínez-Lope, M. García-Clavel, M.E. and Casais-Alvarez, M.T., (1991) Solubilization reaction of the alumina from kaolin by solid state reaction Thermochimica Acta 177 7782 10.1016/0040-6031(91)80085-W.CrossRefGoogle Scholar
Maynard, R.N. Millman, N. and Iannicelli, J., (1969) A method for removing titanium dioxide impurities from kaolin Clays and Clay Minerals 17 5962 10.1346/CCMN.1969.0170203.CrossRefGoogle Scholar
Nagaishi, T. Ishiyama, S. Yoshimura, J. Matsumoto, M. and Yoshinaga, S., (1982) Reaction of ammonium sulphate with aluminium oxide Journal of Thermal Analysis 23 201207 10.1007/BF01908502.10.1007/BF01908502CrossRefGoogle Scholar
Peters, F.A., Johnson, W. and Kirby, R.C. (1963) Methods for producing alumina from clay: An evaluation of a potassium alum process. U.S. Department of the Interior, Bureau of Mines, Report of Investigations RI 6290.Google Scholar
Peters, F.A., Johnson, P.W. and Kirby, R.C. (1965) Methods for producing alumina from clay: An evaluation of two ammonium alum processes. US Department of the Interior, Bureau of Mines, Report of Investigations RI 6573.Google Scholar
Ruiz, M.T., (1988) Obtención de alúmina por ataque ácido de materiales no bauxíticos españoles activados por aportación de energía mecánica Spain Departamento de Química Inorgánica, Universidad de Sevilla 355 pp.Google Scholar
Seyfried, W.R., (1949) The ammonium sulfate process for the extraction of alumina from clay and its application in a plant in Salem, Oregon Transactions of AIME 182 39.Google Scholar
Solano, E. and Juan, D., (1995) Obtención de alúmina a partir de arcillas utilizando como agente disgregante el bisulfato sódico Química e Industria 14 82 85.Google Scholar
St. Clair, H.W. Ravitz, S.F. Sweet, A.T. and Plummer, C.E., (1944) The ammonium sulfate process for production of alumina from western clays Transactions of AIME 159 255 256.Google Scholar
Ziegenbalg, S. and Haake, G. (1983) Investigations into the alumina extraction from clay by hydrochloric and sulphuric acid leaching. Light Metals, 11191143.Google Scholar