header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

INFLUENCE OF FLUID UPTAKE ON THE MECHANICAL AND THERMAL PROPERTIES OF PMMA-BASED BONE CEMENT

The European Orthopaedic Research Society (EORS) 31st Annual Meeting, Porto, Portugal, 27–29 September 2023. Part 2 of 2.



Abstract

According to the latest report from the German Arthroplasty Registry, aseptic loosening is the primary cause of implant failure following primary hip arthroplasty. Osteolysis of the proximal femur due to the stress-shielding of the bone by the implant causes loss of fixation of the proximal femoral stem, while the distal stem remains fixed.

Removing a fixed stem is a challenging process. Current removal methods rely on manual tools such as chisels, burrs, osteotomes, drills and mills, which pose the risk of bone fracture and cortical perforation. Others such as ultrasound and laser, generate temperatures that could cause thermal injury to the surrounding tissues and bone. It is crucial to develop techniques that preserve the host bone, as its quality after implant removal affects the outcome of a revision surgery.

A gentler removal method based on the transcutaneous heating of the implant by induction is proposed. By reaching the glass transition temperature (TG) of the periprosthetic cement, the cement is expected to soften, enabling the implant to be gently pulled out. The in-vivo environment comprises body fluids and elevated temperatures, which deteriorate the inherent mechanical properties of bone cement, including its TG. We aimed to investigate the effect of fluid absorption on the TG (ASTM E2716-09) and Vicat softening temperature (VST) (ISO 306) of Palacos R cement (Heraeus Medical GmbH) when dry and after storage in Ringer's solution for up to 8 weeks.

Samples stored in Ringer's solution exhibited lower TG and VST than those stored in air. After 8 weeks, the TG decreased from 95.2°C to 81.5°C in the Ringer's group, while the VST decreased from 104.4°C to 91.9°C. These findings will be useful in the ultimate goal of this project which is to design an induction-based system for implant removal.

Acknowledgements: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB/TRR-298-SIIRI – Project-ID 426335750


Email: