流体工学部門講演会講演論文集
Online ISSN : 2424-2896
セッションID: OS06-02
会議情報

気泡流中圧力波に界面熱伝導が及ぼす影響と熱的効果の相互作用に関する理論的発見
*亀井 陸史金川 哲也鮎貝 崇広
著者情報
会議録・要旨集 認証あり

詳細
抄録

Weakly nonlinear propagation of pressure waves in an initially quiescent compressible liquids uniformly containing many spherical microbubbles was theoretically studied by deriving the KdVB (Korteweg–de Vries–Burgers) equation. In particular, the energy equation at the bubble-liquid interface (Prosperetti, J. Fluid Mech., 222, 587, 1991) and the effective polytropic exponent were newly introduced into our model (Kanagawa et al., J. Fluid Sci. Technol., 6, 838, 2011) to clarify thermal effect inside the bubbles mainly on wave dissipation. Thermal conduction was investigated in detail by using some temperature-gradient models. The main results are summarized as follows: (i) Two types of dissipation term appeared: one was a well-known second-order derivative comprising the effect of viscosity and liquid compressibility (acoustic radiation), and the other was a newly discovered term without differentiation comprising the effect of thermal conduction. (ii) The thermal effect contributed to not only the dissipation effect but the nonlinear effect, and nonlinearity increased compared with that in Kanagawa et al. (2011). (iii) There were no significant differences among four temperature-gradient models for milliscale bubbles. However, thermal dissipation increased in four models for microscale bubbles. (iv) The thermal dissipation effect in this study was comparable with that in a KdVB equation derived by Prosperetti (1991) although the forms of dissipation terms describing the effect of thermal conduction differed.

著者関連情報
© 2020 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top