近红外荧光成像在泌尿系肿瘤中的研究进展
Research Progress on Specific Imaging of NIR-II Fluorescence Imaging in Urological Tumors
DOI: 10.12677/acm.2024.143891, PDF, HTML, XML, 下载: 15  浏览: 53  科研立项经费支持
作者: 达尼亚尔·努尔德别克, 阿卜杜热合曼·则比布拉, 乔炳璋, 木拉提·热夏提*:新疆医科大学第一临床医学院泌尿外科,新疆 乌鲁木齐
关键词: 近红外荧光成像泌尿系肿瘤肿瘤成像Near Infrared Region Fluorescence Imaging Urinary System Tumors Tumor Imaging
摘要: 恶性肿瘤严重威胁着人类的生命健康,其中泌尿系三大肿瘤的发病率和死亡率也在不断上升,早期诊断、早期治疗可以显著改善肿瘤患者的预后。荧光成像(fluorescence imaging, FLI)可以进行实时、无创、高时空分辨率的成像,准确获取体内动态生物信息,对癌症的早期诊断和治疗具有重要作用。得益于近红外波段(Near-infrared, NIR)较强的穿透能力,有利于实现大的提高成像深度和高空间分辨率,突破了组织深部的成像限制。目前,荧光成像技术已用于肿瘤的特异性成像、手术辅助导航和光热治疗中,因此本文就NIR荧光成像在泌尿系肿瘤中特异性显像的研究进展作一综述。
Abstract: Malignant tumors pose a serious threat to human life and health, among which the incidence rate and mortality of the three major tumors of the urinary system are also rising. Early diagnosis and early treatment can significantly improve the prognosis of tumor patients. Fluorescence imaging (FLI) can provide real-time, non-invasive, and high spatiotemporal resolution imaging, accurately obtaining dynamic biological information in the body, and plays an important role in the early diagnosis and treatment of cancer. Thanks to the strong penetration ability of the Near infrared (NIR) band, it is conducive to achieving significant improvements in imaging depth and high spatial resolution, breaking through the imaging limitations of deep tissues. At present, fluorescence imaging technology has been used in tumor specific imaging, surgical assisted navigation, and photothermal therapy. Therefore, this article reviews the research progress of NIR fluorescence imaging in specific imaging of urinary system tumors.
文章引用:达尼亚尔·努尔德别克, 阿卜杜热合曼·则比布拉, 乔炳璋, 木拉提·热夏提. 近红外荧光成像在泌尿系肿瘤中的研究进展[J]. 临床医学进展, 2024, 14(3): 1659-1665. https://doi.org/10.12677/acm.2024.143891

1. 引言

恶性肿瘤对人类的生命健康构成严重威胁,根据2020年全球癌症统计,泌尿系肿瘤发病率居高不下,按照发病率主要包括前列腺癌,膀胱癌和肾癌,三者占所有癌症新发病例的12.5% [1] 。其中前列腺癌(prostate cancer, PCa)在西方发达国家,发病率位于男性恶性肿瘤第一位 [2] 。而膀胱癌是泌尿生殖系统中发病率位居第二的恶性肿瘤,其发病率位于全身恶性肿瘤的第九位,2020年全球约有57.3万例膀胱癌新发患者和21.3万例死亡患者 [1] 。膀胱癌作为我国最常见的泌尿系肿瘤之一,且其发病率逐步上升,2022年我国最新统计显示膀胱癌发病率约91,000人,死亡约43,000人 [3] 。对恶性肿瘤进行早期诊断、早期治疗是提高患者生存率和改善生活质量的重要前提。目前B超、CT、MRI、PET-CT等影像学检查手段用于恶性肿瘤的诊断及病情评估。但由于目前影像技术的灵敏度及分辨率,对于早期肿瘤仍难以高效识别,且因其扫描时间较长,实时性较差,难以指导术中导航作用。

光学生物成像技术,尤其是荧光成像(fluorescence imaging, FLI)技术在生物医学研究及临床诊断等方面发挥了非常重要的作用。由于其高灵敏度、高时空分辨率及实时性等良好的成像特性,能够对肿瘤进行精准、实时成像,显示出其广阔的研究前景 [4] 。目前,基于荧光的光学成像从显微镜和动物研究发展到人体研究,在几个疾病领域已经进入了临床实践,有望在恶性肿瘤的早期诊断和手术引导中起到重要作用。其中,近红外二区波段(Near-infrared II, NIR-II)内的光,与可见光和近红外一区(Near-infrared II, NIR-I)波段的光相比光波长更长、在生物组织中的散射更小、穿透能力更强,有利于实现大的提高成像深度和高空间分辨率 [5] 。因此,本文就NIR荧光成像在泌尿系肿瘤中特异性显像的研究进展作一综述。

2. 近红外荧光成像的基本原理

FLI是一种新型的成像方法。当荧光团受到外界光照激发时,其可辐射出特定波长的荧光,在经过生物组织的吸收和散射后,被光学探测器捕获并转化为荧光信号。最后,这些信号通过电脑处理,形成荧光图像。

荧光探针是FLI的核心和基础,通常由荧光基团(fluorophore)、连接体(spacer)和识别基团(receptor)组成 [6] 。依据发射波长,荧光基团被分为可见光波段(400~760 nm)荧光团和近红外波段(760~1700 nm)荧光团。其中近红外波段可分为NIR-I (波长范围700~900 nm)和NIR-II (波长范围900~1700 nm),早期的探针主要使用可见光波段荧光团,但因其成像深度不足、信噪比低、灵敏度差,现已很少用于肿瘤成像。NIR-II是最新发现的近红外成像波段。NIR-II波段的光受生物组织自发荧光的干扰相对较小,从而有利于提高成像的信噪比和对比度,对恶性肿瘤的应用具有更显著的优势 [7] 。得益于以上优势,在NIR-II波段内进行生物成像时,生物样品显得更加“透明”。

随着荧光成像技术的发展,研究者通过设计和修饰识别基团,开发了一系列近红外荧光团,提高了恶性肿瘤FLI的选择性和特异性。迄今为止,NIR-II荧光成像已用于各种体内功能成像 [8] [9] [10] 。

3. 近红外荧光成像在泌尿系肿瘤诊断中的应用

1) FLI与肾癌

肾癌起源于肾小管上皮细胞,2021年美国新发7万多例肾癌病例 [11] 。其中最常见的病理类型是肾透明细胞癌(clear cell renal cell carcinoma, ccRCC),约占肾癌的80%~90% [12] 。张 [13] 等人研发的亲脂性近红外荧光染料IR-780可选择性蓄积在肾透明细胞癌中,可对肾脏肿瘤区域进行靶向成像。Yao [14] 等发现的大分子探针FBP 912可对肾细胞癌主动靶向成像,具有高亮度和更长的循环时间(t1/2 ≈ 6.1小时),且可以用于非侵入性诊断肾脏缺血再灌注损伤。而Qu等 [15] 发现的D-AgS量子点可以在小鼠原位肾肿瘤组织中可以被动的有效积累,对肾脏肿瘤的诊断具有一定的意义。Du等 [16] 通过将吲哚菁绿(ICG)与PEG45分子偶联合成的ICG-PEG45,因其可通过肾小管中排出,可以主动蓄积在起源于肾小管上皮细胞的肾透明细胞组织中,并且成功检测到小鼠脑、骨和肺等其他器官的肾癌转移组织,为肾透明细胞癌的转移灶的精准诊断提供了理论基础。

2) FLI与膀胱癌

膀胱癌是泌尿系统中最常见的恶性肿瘤之一,早期精准诊断和早期治疗对患者预后至关重要。Lin [17] 等人发现的HSA-MnO2-Ce6 NPs可在小鼠原位膀胱癌中靶向成像,而在正常膀胱组织中几乎没有荧光成像。Ren [18] 等人开发的AuPd-P-FA纳米探针也表现出优异的NIR-II荧光成像性能。AuPd-P-FA可在注射后1小时有效的蓄积在膀胱癌组织中,且注射后6小时依旧可以清晰的观察到荧光信号,有望实现早期膀胱癌的无创诊断。Alifu [19] 等合成的BPN-BBTD NPs具有800至1300 nm的宽发射光谱,并表现出优异且稳定的光热转换能力,效率高达39.8%。静脉注射BPN-BBTD NP后,膀胱原位肿瘤部位和皮下异种移植膀胱肿瘤的裸鼠在肿瘤部位均有荧光信号。证实了BPN-BBTD NPs对肿瘤的靶向性,且NIR-II荧光成像模式可以提供更大的成像深度。而Huang [20] 等人发现的CyP1可以与膀胱癌的特异性标志物APN结合,进行NIR后可荧光成像,可精准诊断膀胱癌组织。并利用特异性结合的特点进行尿液分析,用于诊断膀胱癌。当然,也与其他癌症成像一样,也有研究者使用ICG对膀胱癌进行成像 [21] 。研究者将ICG与CD47抗体偶联,合成膀胱癌的靶向探针,将25名接受根治性膀胱切除术的患者在手术后,将新鲜分离的膀胱标本与ICG-anti-CD47一起孵育,并在白光和近红外(NIR)光下捕获图像,得出了ICG-anti-CD47具有准确诊断膀胱癌的结论。

3) FLI与前列腺癌

前列腺癌起病隐匿,其早期诊断和早期治疗有助于提高患者生存期。Asha [22] 等人设计开发的针对前列腺特异性膜抗原(PSMA)的链子探针PSMA-QD655,在体外实验中可以与前列腺癌细胞特异性结合,且在前列腺癌组织中也表现出高亲和力和穿透性,在近红外区激光照射后可以清晰观察到前列腺癌组织,具有术中导航的潜力。许多前列腺癌患者在治疗后会转变为去势抵抗性前列腺癌(prostate resistant prostate cancer, CRPC),给CRPC的早期诊断尤为重要。在CRPC患者中观察到雌激素受体β (ERβ)的异常表达 [23] 。因此Thelen [24] 等人利用次特点设计了靶向ERβ的缺氧反应NIR探针P1和P2,并在体内体外的实验研究中表现出了靶向结合精准识别,并且成像能力强、抗干扰能力强,为CRPC的诊断提供了新的方向。

4. 近红外荧光成像在治疗中的应用

1) FLI实验研究

光动力疗法(photothermal therapy, PTT)是一种利用光动力效应进行疾病诊断和治疗的新技术。其基本原理是利用生物组织中的内源性或外源性光敏物质在受到相应波长的光照时,吸收光子能量,从基态变成激发态。光敏物质与稳态的分子氧发生一系列光化学反应,产生单线态氧和自由基等具有细胞毒性的物质。这些活性氧能够破坏肿瘤中的微血管和肿瘤细胞,激活免疫系统,导致肿瘤细胞的死亡,从而达到治疗肿瘤的目的 [25] [26] 。

自PTT治疗发现以来,其已用于多种肿瘤的治疗,也包括泌尿系肿瘤。Lin [17] 等人发现的HSA-MnO2-Ce6 NPs可以产生O2,从而改善膀胱癌缺氧环境。并且对小鼠原位膀胱癌通过激光照射治疗后,小鼠癌组织的体积显著减小,且显着提高小鼠的的寿命。Alifu [19] 等在证实BPN-BBTD纳米粒子有效地靶向肿瘤后,使用785 nm激光(0.6 W/cm2)照小鼠皮下肿瘤,肿瘤部位的温度在100秒内升至55℃,且在监测时间内实验组肿瘤组织被完全根治,而对照组出现肿瘤组织变大或小鼠死亡。而小鼠原位肿瘤组织使用激光照射后,与对照组相比肿瘤组织也得到了一定程度的抑制。证实BPN-BBTD纳米粒子作为一种有效的光热剂,可通过单次静脉注射和一次性激光照射来治疗肿瘤。Zhou [27] 等人发现的AuPBs在1064 nm处具有超过80%的优异光热转换效率,因此他们使用1064 nm激光照射5 mm鸡肉覆盖的肿瘤组织,模拟治疗体内肿瘤的情况,在3 min照射内将覆盖肿瘤的温度升高至50℃以上,并成功抑制了肿瘤的生长。

而Sun [28] 等人使用的光热纳米材料Au空心纳米棒(AuHNRs)表现出很强的光热性能和载药能力,因此他们设计了基于NIR-II的PTT的非侵入性治疗有助于克服膀胱粘膜屏障并增强药物输送,在原位膀胱癌模型中,肿瘤抑制率和小鼠存活时间显著提高。最近,也有近红外光免疫疗法(NIR-PIT)被开发研究。如Inagaki等人 [29] 将帕尼单抗与荧光染料IRDye700DX偶联形成Pan-IR700,可以被NIR光激活,导致细胞膜快速损伤和免疫原性细胞死亡。因此作者表明,NIR-PIT在治疗骨转移方面具有临床应用的潜力。

2) FLI临床应用

由于FLI技术的高灵敏度、高时空分辨率及实时性等良好的成像特性,术中近红外II区荧光成像辅助的手术也不断开展,其中也包括泌尿系肿瘤。其中,使用吲哚菁绿给药并近红外荧光成像辅助进行肾部分切除术的研究较多 [30] [31] [32] [33] 。在这些研究中,研究者均发现了FLI辅助的肾部分切除术有很低的切缘阳性率,且术中出现热缺血时间显著缩短。然而,他们使用的NIR-I区成像与NIR-II相比,组织渗透性较差,因此,NIR-I辅助的荧光成像在确定恶性病变与良性病变的阳性率较差。而后来的Cao [34] 等团队开展了术中近红外II区荧光成像辅助肾单位保留手术,他们对纳入的9例肾透明细胞癌的患者静脉注射吲哚菁绿(ICG, 0.5 mg/kg),采用NIR-II荧光成像系统观察肿瘤,并在NIR-II荧光成像引导下,对肿瘤进行了完整切除。分析病灶的荧光图像发现,NIR-II成像能够从切除的病灶中识别肿瘤组织,而对于良性肾囊肿则几乎没有荧光,且对进行手术的患者随访4~17个月后未发现复发或转移。不仅限于此,前列腺癌、膀胱癌和肾上腺疾病中使用ICG近红外荧光进行术中辅助进行切缘识别、淋巴结清扫的研究也在不断开展 [35] [36] [37] [39] 。

基于FLI辅助的手术不仅用于成人手术中,最近也开始在儿科患者中研究。其中注射ICG的FLI辅助手术已在小儿泌尿外科中应用,包括肾部分切除术、保留淋巴管精索静脉曲张修复术和肿瘤学手术。已被证明是安全、方便、省时、便宜且非常有效地改善术中视野和手术能力 [40] 。

5. 总结与展望

由于组织散射和自发荧光大大降低,NIRI-II生物医学成像可有效地以高精度探测到更深的组织。这对于肿瘤的荧光成像、药物输送及光热治疗提供了基础,也因其多功能集成而具有广泛的应用前景。不仅可用于基础研究,还将涉及更多的应用领域。因此荧光成像正迅速向广泛的临床应用发展,目前荧光成像辅助的手术正在不断开展,也取得了不错的进展。随着研究的深入和技术的不断创新,NIR荧光探针在临床应用中的优势将更加凸显,为我国医疗事业带来革命性的变革。相信在不远的将来,商用和临床可用的NIR荧光探针将得到广泛使用,可以精准诊断早期病变,并在术中导航识别肿瘤组织并降低切缘阳性率,进一步改善手术效果,提高患者生存率。

然而,当前NIR荧光探针的研究与应用仍面临一定的挑战。首先,探针的制备工艺和稳定性需要进一步优化,以满足临床应用的需求。其次,针对不同疾病的诊断需求,需要开发具有特异性的NIR荧光探针,以提高诊断的准确性和可靠性。总之,NIR荧光探针技术在商用和临床应用中具有巨大的潜力,将为医疗领域带来深远的影响。相信在不久的将来,NIR荧光探针将在我国得到广泛应用,造福广大患者。

基金项目

国家自然科学基金(82360353);省部共建中亚高发病成因与防治国家重点实验室开放课题基金(SKL-HIDCA-2022-22)。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[3] Xia, C., Dong, X., Li, H., Cao, M., Sun, D., He, S., Yang, F., Yan, X., Zhang, S., Li, N. and Chen, W. (2022) Cancer Statistics in China and United States, 2022: Profiles, Trends, and Determinants. Chinese Medical Journal, 135, 584-590.
https://doi.org/10.1097/CM9.0000000000002108
[4] Schouw, H.M., Huisman, L.A., Janssen, Y.F., Slart, R.H.J.A., Borra, R.J.H., Willemsen, A.T.M., Brouwers, A.H., Van Dijl, J.M., Dierckx, R.A., Van Dam, G.M., Szymanski, W., Boersma, H.H. and Kruijff, S. (2021) Targeted Optical Fluorescence Imaging: A Meta-Narrative Review and Future Perspectives. European Journal of Nuclear Medicine and Molecular Imaging, 48, 4272-4292.
https://doi.org/10.1007/s00259-021-05504-y
[5] Shou, K., Qu, C., Sun, Y., Chen, H., Chen, S., Zhang, L., Xu, H., Hong, X., Yu, A. and Cheng, Z. (2017) Multifunctional Biomedical Imaging in Physiological and Pathological Conditions Using a NIR-II Probe. Advanced Functional Materials, 27, Article ID: 1700995.
https://doi.org/10.1002/adfm.201700995
[6] Ito, R., Kamiya, M. and Urano, Y. (2022) Molecular Probes for Fluorescence Image-Guided Cancer Surgery. Current Opinion in Chemical Biology, 67, Article ID: 102112.
https://doi.org/10.1016/j.cbpa.2021.102112
[7] Li, D., Liu, Q., Qi, Q., Shi, H., Hsu, E.C., Chen, W., Yuan, W., Wu, Y., Lin, S., Zeng, Y., Xiao, Z., Xu, L., Zhang, Y., Stoyanova, T., Jia, W. and Cheng, Z. (2020) Gold Nanoclusters for NIR-II Fluorescence Imaging of Bones. Small, 16, e2003851.
https://doi.org/10.1002/smll.202070237
[8] Qi, J., Sun, C., Li, D., Zhang, H., Yu, W., Zebibula, A., Lam, J.W.Y., Xi, W., Zhu, L., Cai, F., Wei, P., Zhu, C., Kwok, R.T.K., Streich, L.L., Prevedel, R., Qian, J. and Tang, B. Z. (2018) Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared-I Emission for Ultradeep Intravital Two-Photon Microscopy. ACS Nano, 12, 7936-7945.
https://doi.org/10.1021/acsnano.8b02452
[9] Tang, Y., Li, Y., Hu, X., Zhao, H., Ji, Y., Chen, L., Hu, W., Zhang, W., Li, X., Lu, X., Huang, W. and Fan, Q. (2018) “Dual Lock-and-Key”-Controlled Nanoprobes for Ultrahigh Specific Fluorescence Imaging in the Second Near-Infrared Window. Advanced Materials, 30, e1801140.
https://doi.org/10.1002/adma.201801140
[10] Carr, J.A., Franke, D., Caram, J.R., Perkinson, C.F., Saif, M., Askoxylakis, V., Datta, M., Fukumura, D., Jain, R.K., Bawendi, M.G. and Bruns, O.T. (2018) Shortwave Infrared Fluorescence Imaging with the Clinically Approved Near-Infrared Dye Indocyanine Green. Proceedings of the National Academy of Sciences of the United States of America, 115, 4465-4470.
https://doi.org/10.1073/pnas.1718917115
[11] Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33.
https://doi.org/10.3322/caac.21654
[12] Zhang, Q., Huang, R., Hu, H., Yu, L., Tang, Q., Tao, Y., Liu, Z., Li, J. and Wang, G. (2020) Integrative Analysis of Hypoxia-Associated Signature in Pan-Cancer. iScience, 23, Article ID: 101460.
https://doi.org/10.1016/j.isci.2020.101460
[13] 张伟, 屈志义, 刘晓阳, 等. 近红外荧光染料IR-780在肾透明细胞癌中的成像特征[J]. 中国组织工程研究, 2018, 22(28): 4532-4536.
[14] Yao, C., Chen, Y., Zhao, M., Wang, S., Wu, B., Yang, Y., Yin, D., Yu, P., Zhang, H. and Zhang, F. (2022) A Bright, Renal-Clearable NIR-II Brush Macromolecular Probe with Long Blood Circulation Time for Kidney Disease Bioimaging. Angewandte Chemie, 61, e202114273.
https://doi.org/10.1002/anie.202114273
[15] Qu, S., Jia, Q., Li, Z., Wang, Z. and Shang, L. (2022) Chiral NIR-II Fluorescent Ag2S Quantum Dots with Stereospecific Biological Interactions and Tumor Accumulation Behaviors. Science Bulletin, 67, 1274-1283.
https://doi.org/10.1016/j.scib.2022.05.001
[16] Du, B., Chong, Y., Jiang, X., Yu, M., Lo, U.G., Dang, A., Chen, Y.A., Li, S., Hernandez, E., Lin, J.C., Hsieh, J.T. and Zheng, J. (2021) Hyperfluorescence Imaging of Kidney Cancer Enabled by Renal Secretion Pathway Dependent Efflux Transport. Angewandte Chemie, 60, 351-359.
https://doi.org/10.1002/anie.202010187
[17] Lin, T., Zhao, X., Zhao, S., Yu, H., Cao, W., Chen, W., Wei, H. and Guo, H. (2018) O2-Generating MnO2 Nanoparticles for Enhanced Photodynamic Therapy of Bladder Cancer by Ameliorating Hypoxia. Theranostics, 8, 990-1004.
https://doi.org/10.7150/thno.22465
[18] Ren, S., Dai, R., Zheng, Z., Liu, Q., Zheng, X., Li, J., Wu, S., Zhang, R. and Gui, Z. (2023) A Novel Bidirectional Perfusion-Like Administered System for NIR-II Fluorescence Imaging Precision Diagnosis of Bladder Cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 49, Article ID: 102661.
https://doi.org/10.1016/j.nano.2023.102661
[19] Alifu, N., Zebibula, A., Qi, J., Zhang, H., Sun, C., Yu, X., Xue, D., Lam, J.W.Y., Li, G., Qian, J. and Tang, B.Z. (2022) Correction to “Single-Molecular Near-Infrared-II Theranostic Systems: Ultrastable Aggregation-Induced Emission Nanoparticles for Long-Term Tracing and Efficient Photothermal Therapy”. ACS Nano, 16, 9961.
https://doi.org/10.1021/acsnano.2c04138
[20] Huang, J., Jiang, Y., Li, J., He, S., Huang, J. and Pu, K. (2020) A Renal-Clearable Macromolecular Reporter for Near-Infrared Fluorescence Imaging of Bladder Cancer. Angewandte Chemie, 59, 4415-4420.
https://doi.org/10.1002/anie.201911859
[21] Hao, H., Wang, X., Qin, Y., Ma, Z., Yan, P., Liu, C., Chen, G. and Yang, X. (2023) Ex Vivo Near-Infrared Targeted Imaging of Human Bladder Carcinoma by ICG-Anti-CD47. Frontiers in Oncology, 13, Article 1083553.
https://doi.org/10.3389/fonc.2023.1083553
[22] Asha Krishnan, M., Yadav, K., Roach, P., and Chelvam, V. (2021) A Targeted Near-Infrared Nanoprobe for Deep-Tissue Penetration and Imaging of Prostate Cancer. Biomaterials Science, 9, 2295-2312.
https://doi.org/10.1039/D0BM01970D
[23] Fujimura, T., Takayama, K., Takahashi, S. and Inoue, S. (2018) Estrogen and Androgen Blockade for Advanced Prostate Cancer in the Era of Precision Medicine. Cancers, 10, Article 29.
https://doi.org/10.3390/cancers10020029
[24] Thelen, P., Wuttke, W. and Seidlová-Wuttke, D. (2014) Phytoestrogens Selective for the Estrogen Receptor β Exert Anti-Androgenic Effects in Castration Resistant Prostate Cancer. The Journal of Steroid Biochemistry and Molecular Biology, 139, 290-293.
https://doi.org/10.1016/j.jsbmb.2013.06.009
[25] Lucky, S.S., Soo, K.C. and Zhang, Y. (2015) Nanoparticles in Photodynamic Therapy. Chemical Reviews, 115, 1990-2042.
https://doi.org/10.1021/cr5004198
[26] Zhou, Z., Zhang, L., Zhang, Z. and Liu, Z. (2021) Advances in Photosensitizer-Related Design for Photodynamic Therapy. Asian Journal of Pharmaceutical Sciences, 16, 668-686.
https://doi.org/10.1016/j.ajps.2020.12.003
[27] Zhou, J., Jiang, Y., Hou, S., Upputuri, P.K., Wu, D., Li, J., Wang, P., Zhen, X., Pramanik, M., Pu, K. and Duan, H. (2018) Compact Plasmonic Blackbody for Cancer Theranosis in the Near-Infrared II Window. ACS Nano, 12, 2643-2651.
https://doi.org/10.1021/acsnano.7b08725
[28] Sun, Z., Zhang, W., Ye, Z., Yuan, L., Fu, M., Liu, X., Liang, H. and Han, H. (2022) NIR-II-Triggered Doxorubicin Release for Orthotopic Bladder Cancer Chemo-Photothermal Therapy. Nanoscale, 14, 17929-17939.
https://doi.org/10.1039/D2NR04200B
[29] Chen, Q.Y., Xie, J.W., Zhong, Q., Wang, J.B., Lin, J.X., Lu, J., Cao, L.L., Lin, M., Tu, R.H., Huang, Z.N., Lin, J.L., Zheng, H.L., Li, P., Zheng, C.H. and Huang, C.M. (2020) Safety and Efficacy of Indocyanine Green Tracer-Guided Lymph Node Dissection during Laparoscopic Radical Gastrectomy in Patients with Gastric Cancer: A Randomized Clinical Trial. JAMA Surgery, 155, 300-311.
https://doi.org/10.1001/jamasurg.2019.6033
[30] Inagaki, F.F., Wakiyama, H., Furusawa, A., Okada, R., Kato, T., Fujimura, D., Okuyama, S., Fukushima, H., Takao, S., Choyke, P.L. and Kobayashi, H. (2023) Near-Infrared Photoimmunotherapy (NIR-PIT) of Bone Metastases. Biomedicine & Pharmacotherapy, 160, Article ID: 114390.
https://doi.org/10.1016/j.biopha.2023.114390
[31] Tobis, S., Knopf, J.K., Silvers, C., Messing, E., Yao, J., Rashid, H., Wu, G. and Golijanin, D. (2012) Robot-Assisted and Laparoscopic Partial Nephrectomy with Near Infrared Fluorescence Imaging. Journal of Endourology, 26, 797-802.
https://doi.org/10.1089/end.2011.0604
[32] Krane, L.S., Manny, T.B. and Hemal, A.K. (2012) Is Near Infrared Fluorescence Imaging Using Indocyanine Green Dye Useful in Robotic Partial Nephrectomy: A Prospective Comparative Study of 94 Patients. Urology, 80, 110-116.
https://doi.org/10.1016/j.urology.2012.01.076
[33] Bjurlin, M.A., McClintock, T.R. and Stifelman, M.D. (2015) Near-Infrared Fluorescence Imaging with Intraoperative Administration of Indocyanine Green for Robotic Partial Nephrectomy. Current Urology Reports, 16, Article No. 20.
https://doi.org/10.1007/s11934-015-0495-9
[34] Cao, C., Deng, S., Wang, B., Shi, X., Ge, L., Qiu, M., Zhang, F., Lu, M., Ma, L., Chi, C., Hu, Z., Tian, J. and Zhang, S. (2021) Intraoperative Near-Infrared II Window Fluorescence Imaging-Assisted Nephron-Sparing Surgery for Complete Resection of Cystic Renal Masses. Clinical and Translational Medicine, 11, e604.
https://doi.org/10.1002/ctm2.604
[35] Van Der Poel, H.G., Buckle, T., Brouwer, O.R., ValdéS Olmos, R.A. and Van Leeuwen, F.W. (2011) Intraoperative Laparoscopic Fluorescence Guidance to the Sentinel Lymph Node in Prostate Cancer Patients: Clinical Proof of Concept of an Integrated Functional Imaging Approach Using a Multimodal Tracer. European Urology, 60, 826-833.
https://doi.org/10.1016/j.eururo.2011.03.024
[36] Kaplan-Marans, E., Fulla, J., Tomer, N., Bilal, K. and Palese, M. (2019) Indocyanine Green (ICG) in Urologic Surgery. Urology, 132, 10-17.
https://doi.org/10.1016/j.urology.2019.05.008
[37] Manny, T.B., Patel, M. and Hemal, A.K. (2014) Fluorescence-Enhanced Robotic Radical Prostatectomy Using Real-Time Lymphangiography and Tissue Marking with Percutaneous Injection of Unconjugated Indocyanine Green: The Initial Clinical Experience in 50 Patients. European Urology, 65, 1162-1168.
https://doi.org/10.1016/j.eururo.2013.11.017
[38] Inoue, S., Shiina, H., Mitsui, Y., Yasumoto, H., Matsubara, A. and Igawa, M. (2013) Identification of Lymphatic Pathway Involved in the Spread of Bladder Cancer: Evidence Obtained From Fluorescence Navigation with Intraoperatively Injected Indocyanine Green. Canadian Urological Association Journal, 7, e322-e328.
https://doi.org/10.5489/cuaj.1251
[39] Manny, T.B., Pompeo, A.S. and Hemal, A.K. (2013) Robotic Partial Adrenalectomy Using Indocyanine Green Dye with Near-Infrared Imaging: The Initial Clinical Experience. Urology, 82, 738-742.
https://doi.org/10.1016/j.urology.2013.03.074
[40] Esposito, C., Borgogni, R., Autorino, G., Cerulo, M., Carulli, R., Esposito, G., Del Conte, F. and Escolino, M. (2022) Applications of Indocyanine Green-Guided Near-Infrared Fluorescence Imaging in Pediatric Minimally Invasive Surgery Urology: A Narrative Review. Journal of Laparoendoscopic & Advanced Surgical Techniques, 32, 1280-1287.
https://doi.org/10.1089/lap.2022.0231