早期诊断NEC无创性生物标志物的研究进展
Advances in Non-Invasive Biomarkers for Early Diagnosis of NEC
DOI: 10.12677/acm.2024.143875, PDF, HTML, XML, 下载: 8  浏览: 51 
作者: 王静文, 李禄全*:重庆医科大学附属儿童医院新生儿诊疗中心,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童神经发育与认知障碍重庆市重点实验室,重庆
关键词: 新生儿坏死性小肠结肠炎早期诊断无创性生物标志物Neonatal Necrotizing Enterocolitis Early Diagnosis Non-Invasive Biomarker
摘要: 坏死性小肠结肠炎(necrotizing enterocolitis, NEC)是新生儿常见的消化系统疾病,尤其多见于早产儿和低出生体重儿。NEC起病隐匿,进展快,可迅速发展为爆发性NEC,其死亡率高达50%,且存活患儿容易出现各种与之相关的严重后遗症,严重影响患儿的生存质量。因此,早期诊断NEC显得尤为必要。本文就目前关于无创性生物标志物在NEC早期诊断中的研究进展作一综述。
Abstract: Necrotizing enterocolitis (NEC) is a common digestive disease in newborns, especially in premature and low birth weight infants. NEC has a hidden onset, rapid progression, and can rapidly develop into explosive NEC, with a mortality rate of up to 50%. Surviving children are prone to a variety of related serious sequelae, seriously affecting their quality of life. Therefore, early diagnosis of NEC is particularly necessary. This article reviews the progress of non-invasive biomarkers in the early diagnosis of NEC.
文章引用:王静文, 李禄全. 早期诊断NEC无创性生物标志物的研究进展[J]. 临床医学进展, 2024, 14(3): 1529-1535. https://doi.org/10.12677/acm.2024.143875

1. 引言

坏死性小肠结肠炎(necrotizing enterocolitis, NEC)是新生儿常见的严重胃肠道疾病,影响2%~13%的早产儿,死亡率高达50%,且存活患儿容易出现肠狭窄、短肠综合征及神经系统发育迟缓等并发症 [1] [2] 。NEC病初症状隐匿,但可迅速发展为爆发性NEC,甚至出现肠穿孔等急腹症,因此早诊断、早治疗对降低患儿病死率及预后不良发生率有极其重要的意义 [3] [4] 。目前NEC的诊断主要基于改良的Bell分期标准,根据临床表现、实验室检查、放射学或超声检查进行诊断 [5] 。但血清生化检查通常在NEC发作后才出现异常,且为侵入性操作,腹部X片提示门静脉积气或肠壁积气时疾病往往已处于严重阶段,不利于早期诊断和治疗。因此需要寻找可以早期识别NEC并监测疾病进展的生物标志物。本文对无创性生物标志物在NEC早期诊断中的研究进展进行讨论。

2. 早期诊断NEC无创性生物标志物

2.1. 粪便钙卫蛋白

钙卫蛋白(fecal calprotectin, FC)是一种胞质蛋白,与钙锌具有良好的亲和性,由中性粒细胞、巨噬细胞等炎细胞表达,当肠道炎症激活时释放,且容易在粪便中检测 [6] 。一项纳入10项研究的Meta分析发现FC在诊断NEC时的敏感性、特异性、诊断优势比及AUC分别为0.86 (95% CI: 0.80~0.91)、0.79 (95% CI: 0.75~0.83)、34.78 (95% CI: 15.30~79.07)和0.92,证实了FC是一种很有前途的NEC早期预测标志物,在新生儿中具有很高的诊断价值 [7] 。Mac等以疑似NEC但腹部平片未见异常的患儿为研究对象,按是否发展为NEC进行分组后发现,NEC组患儿粪便FC水平明显高于非NEC组 [8] 。Pergialiotis等同样发现NEC患儿粪便FC水平明显升高,但其认为FC作为NEC诊断标志物的临界值尚需进一步研究 [9] 。同时,有研究认为早产儿在出生后1周内粪便FC在个体间和个体内差异很大,这限制了通过连续监测粪便FC水平来早期识别诊断NEC [10] 。有研究认为226 ug/g及247 ug/g两个临界值阳性预测值均较低(<0.6) [11] 。Hong等研究认为,新生儿FC水平差异很大,NEC患儿在发病前及发病时均出现FC水平升高,且显著高于脓毒症患儿,FC辅助NEC诊断时临界值为1086 ug/g,特异性75%,敏感性93.3%;区分NEC患儿与脓毒症患儿时临界值为238 ug/g,特异性83% [12] 。这些研究提示FC在早期诊断NEC方面有一定价值,但由于FC个体间水平差异很大,仍需进一步研究其与NEC的关系。

2.2. 脂肪酸结合蛋白

肠脂肪酸结合蛋白(Intestinal fatty acid-binding protein, I-FABP)是参与脂肪酸代谢的特异性胞质蛋白,在肠壁缺血时肠细胞膜完整性破坏,I-FABP被释放入血,并从尿液中排放 [13] 。Coufal等发现,与健康婴儿相比,I-LABP在NEC早期就出现显著升高,提示即使在NEC出现明显症状之前就可以检测到肠道粘膜损伤和强烈的炎症反应 [14] 。Ahmed等进一步发现尿I-FABP可以鉴别Bell’s分期 [15] 。其他研究表明NEC发病7天内的尿I-FABP浓度均高于非NEC患儿(I-FABP > 13.3 ng/mL,预测NEC的敏感性60%,特异性78%),且在NEC诊断3天内具有更强的预测性(I-FABP > 13.9 ng/mL,预测NEC的敏感性为65%,特异性84%) [16] 。同时研究发现血浆I-FABP辅助诊断NEC具有很高的特异性,但灵敏度中等;而尿I-FABP在NEC早期诊断中价值有限,联合其他分子标志物或检测(粪便FC或腹部X片等)可能具有更大的应用价值 [17] 。Saran等发现尿I-FABP与肌酸的比值在3.6 pg/mmol时诊断2期及3期NEC时敏感性及特意性分别为96%和99.5%,优于单独尿I-FABP (临界值1800 pg/ml,诊断2期及3期NEC敏感性88%、特异性82%) [18] 。以上研究提示多种生物标志物联合应用于NEC诊断可能更有价值。

2.3. 三叶因子-3

三叶因子-3 (Trefoil factors-3, TFF-3)在肠道中表达,与维持粘膜屏障完整性、促进粘膜屏障修复及肠道炎症有关 [19] 。由于NEC存在肠道粘膜屏障的明显破坏,其病理特征包括炎症细胞浸润肠粘膜以及全身脓毒症等,TFF-3是NEC早期诊断的一种较有前景的生物标志物 [20] 。Coufal等发现NEC患儿尿TFF-3升高,其水平与肠道损伤程度相关,且TFF-3联合肠脂肪酸结合蛋白和血清淀粉样蛋白可以预测肠壁积气 [14] 。目前关于TFF-3早期诊断NEC的相关实验较少,仍需进一步研究证实其相关性。

2.4. 紧密连接蛋白

紧密连接蛋白(Claudins)在小肠中大量表达,由于NEC肠壁完整性的丧失,故其具有潜在的生物标志物效用 [21] 。Goldstein等发现NEC早产儿Claudin-2在肠道组织中表达降低,而尿液中含量增加 [22] 。Thuijls等对35名疑似NEC的婴儿进行研究,发现诊断为NEC的患儿尿claudin-3水平显著升高,当其临界值为801 INT时,诊断NEC的敏感性为71%,特异性为81% [23] 。目前相关研究样本量较小,需要更多研究来确定Claudins在NEC中的诊断价值。

2.5. 血清淀粉样蛋白

血清淀粉样蛋白(Serum amyloid-A protein, SAA)是一种急性期蛋白,在刺激性细胞因子诱导下由干细胞、内皮细胞等分泌,与免疫介导的炎症过程息息相关 [24] 。Reisinger等对62名可疑NEC患儿进行尿I-FABP、尿SAA及粪便钙卫蛋白测定,其中29名患儿最终确诊NEC,结果显示,尿SAA联合尿I-FABP不能提高NEC诊断的准确性 [25] 。随后他们再次对29名确诊NEC的患儿进行对比分析,发现重度NEC (手术性NEC、致死性NEC或Bell’s III期NEC)患儿尿SAA水平较轻度NEC (内科NEC、Bell’ I期或II期NEC)患儿显著升高,其临界值为34.4 ng/mL,敏感性为83%,特异性为83%,同时发现尿SAA与血清血小板计数联合使用时可以提高分辨轻重度NEC的准确性 [26] 。Stepan等认为NEC患儿尿液中SAA水平明显高于对照组,且能区分NEC严重程度,SAA与I-FABP、L-FABP联合可以预测门脉积气的发生或住院时长 [14] 。以上结果提示SAA可能不仅在早期无创性诊断中有一定价值,并且在随后的NEC管理中同样有用。

2.6. 粪便中肠道菌群谱

肠道微生物生态失调被认为与NEC发病密切相关 [27] 。研究认为NEC患儿的肠道微生物多样性降低 [28] 。然而,Feng等发现NEC组与对照组粪便中微生物群多样性无显著差异,这可能与样本量较小有关,同时他们发现NEC患儿粪便中丙酸杆菌较对照组更丰富,而乳酸杆菌相对丰度较低 [29] 。因此NEC患儿或许不仅微生物多样性发生变化,且菌群组成也可能有所差异。健康婴儿的肠道菌群主要由双歧杆菌组成 [30] ,而NEC患儿中双歧杆菌和乳酸杆菌的相对丰度降低 [31] ,大肠杆菌和克雷伯菌的相对丰度增加 [32] 。研究发现NEC发作前肠道菌群也有类似变化 [33] [34] 。Pammi等同样发现NEC患儿粪便微生物组在发病前变形菌门丰度增加,厚壁菌门和拟杆菌门丰度降低 [35] 。现有的研究发现NEC患儿在发病前肠道微生物出现变化,但由于肠道不同区域之间菌群组成存在差异,故其能否用于临床诊断尚需进一步研究分析。

2.7. 挥发性有机物

粪便挥发性有机物(volatile organic compounds, VOCs)是一种碳基气态化合物,来源于肠道细菌的营养物质发酵,被认为可以反映肠道微生物的组成、代谢活动以及微生物群与宿主之间的相互作用 [36] 。Hosfied等发现NEC小鼠模型粪便中VOCs与对照组有显著差别 [32] 。Catherine等认为NEC患儿在确诊NEC之前几天内粪便中VOCs较对照组数量减少,且样本中特异性酯种类减少 [37] 。De Meij等发现,在临床症状出现前2~3 d,NEC患儿的粪便VOCs谱就与对照组有显著差别,早期诊断NEC的敏感性为83%,特异性75% [38] 。多中心前瞻性研究表明NEC患儿粪便中VOCs在临床诊断最早4天前会发生改变 [39] 。然而,有研究发现粪便VOCs会因喂养方式及婴儿性别等不同而有所差别 [40] 。因此,可能需要更多研究来进一步评估VOCs与NEC的关系。

2.8. 肠碱性磷酸酶

肠碱性磷酸酶(intestinal Alkaline Phosphatase, IAP)是一种同型二聚体,主要在肠细胞顶膜上表达,具有抗炎和稳态作用 [41] 。作为肠道内表达的内源性蛋白质,IAP是无创性检测的理想选择。Richard等发现IAP过表达可能预示着NEC的发生风险增加,但并不显著(P = 0.12) [42] 。Heath等发现粪便中大量的IAP蛋白和低IAP酶活性与NEC诊断相关,可作为NEC的有效生物标志物,且IAP可以区分NEC和脓毒血症 [43] 。目前相关研究较少,需要更多试验来进一步确定IAP在诊断NEC中的价值。

2.9. S100A12

S100A2时一种胞质钙结合蛋白,在肠道炎症时由吞噬细胞激活释放,可能在先天免疫中有重要作用 [44] 。Dabritz等发现NEC患儿粪便中S100A12的含量较对照组显著升高,检测NEC的敏感性为70%,特异性68%,阳性和阴性预测值分别为37%和89% [45] 。这说明S100A2是一种有前途的诊断NEC生物标志物,需要更多研究来进一步验证其与NEC的关系。

2.10. 心率变异性

心率变异性(heart rate variability, HRV)是一种无创性检测自主神经调节水平的方法,可以根据心电图计算,通过心跳间隔值的快速傅里叶变换进行时域和频域分析 [3] [46] 。心率变异性的高频谱(high frequency spectrum of heart rate variability, HF-HRV)可以反映迷走神经张力,已被证实为胎儿和新生儿是否健康的标志物 [46] [47] [48] 。动物试验表明,迷走神经障碍会加重NEC小鼠肠上皮绒毛坏死,而NEC小鼠发病早期出现HF-HRV降低 [49] 。Tareq等发现,HRV在临床NEC诊断前2天出现下降,在诊断2天后恢复到正常水平,且HRV变化情况与临床严重程度显著相关 [47] 。临床发现Bell’s II期以上的NEC患儿在临床症状出现前4.5~7.5天即发生HF-HRV的降低,HF-HRV被认为是NEC进展的重要预测因子 [48] 。HF-HRV的主要优点包括其在NEC发病前非侵入性预测NEC、相对较低的成本以及使用现有软件易于分析,因此有潜力成为预测NEC的生物标志物。

2.11. 代谢组学

代谢组学是对小分子代谢物的分析,能反映机体对各种刺激的直接结果 [12] 。目前已有研究证实代谢组学在NEC诊断中的价值 [50] [51] 。研究表明NEC Bell’s II~III期患儿较I期患儿粪便中鞘磷脂显著升高,神经酰胺显著降低 [50] 。Thomaidou等研究发现NEC患儿尿液中有多种代谢物与对照组均有显著差异,且ROC曲线分析提示酪氨酸、精氨酸及核黄素在NEC诊断方面具有一定价值(AUC = 0.963, 95% CI [0.812~1.00]) [51] 。以上均提示代谢组学可以作为NEC早期诊断的生物标志物,但目前研究样本量较少,需要更多更大规模试验来验证代谢组学与NEC的关系。

除上述无创性生物标志物外,粪便脂质运载蛋白-2 [52] 、尿前列腺素E2 [53] 等也已被证实为预测NEC发展的很有前景的生物标志物。

3. 小结

近年关于NEC早期诊断的无创性生物标志物已有大量研究,这些研究对促进NEC临床治疗发展和发病机制的理解具有巨大作用,寻找可以早期诊断NEC的敏感和特异的生物标志物将会大幅降低NEC相关死亡率、提高NEC的预后。但目前尚未明确这些生物标志物的临界值,且其敏感性及特异性仍需进一步评估,因此未来需要更多中心、前瞻性研究来分析这些生物标志物的可重复性及有效性。

NOTES

*通讯作者。

参考文献

[1] Kaplina, A., Kononova, S., Zaikova, E., et al. (2023) Necrotizing Enterocolitis: The Role of Hypoxia, Gut Microbiome, and Microbial Metabolites. International Journal of Molecular Sciences, 24, Article 2471.
https://doi.org/10.3390/ijms24032471
[2] Aladangady, N. and Sanderson, I. (2023) Editorial: Biomarkers of Gut Blood Flow, Oxygenation, Inflammation and NEC in Neonates. Frontiers in Pediatrics, 11, Article 1234832.
https://doi.org/10.3389/fped.2023.1234832
[3] Meister, A.L., Doheny, K.K. and Travagli, R.A. (2020) Necrotizing Enterocolitis: It’s Not All in the Gut. Experimental Biology and Medicine, 245, 85-95.
https://doi.org/10.1177/1535370219891971
[4] Bethell, G.S. and Hall, N.J. (2023) Recent Advances in Our Understanding of NEC Diagnosis, Prognosis and Surgical Approach. Frontiers in Pediatrics, 11, Article 1229850.
https://doi.org/10.3389/fped.2023.1229850
[5] Bell, M.J., Ternberg, J.L., Feigin, R.D., et al. (1978) Neonatal Necrotizing Enterocolitis. Therapeutic Decisions Based upon Clinical Staging. Annals of Surgery, 187, 1-7.
https://doi.org/10.1097/00000658-197801000-00001
[6] Asiri, A.S., Algarni, S.S., Althubaiti, A.Q., et al. (2023) Fecal Calprotectin and Organic Gastrointestinal Disease: A Systematic Review. Cureus, 15, e45019.
https://doi.org/10.7759/cureus.45019
[7] Qu, Y., Xu, W., Han, J., et al. (2020) Diagnostic Value of Fecal Calprotectin in Necrotizing Enterocolitis: A Meta-Analysis. Early Human Development, 151, Article ID: 105170.
https://doi.org/10.1016/j.earlhumdev.2020.105170
[8] MacQueen, B.C., Christensen, R.D., Yost, C.C., et al. (2016) Elevated Fecal Calprotectin Levels during Necrotizing Enterocolitis Are Associated with Activated Neutrophils Extruding Neutrophil Extracellular Traps. Journal of Perinatology, 36, 862-869.
https://doi.org/10.1038/jp.2016.105
[9] Pergialiotis, V., Konstantopoulos, P., Karampetsou, N., et al. (2016) Calprotectin Levels in Necrotizing Enterocolitis: A Systematic Review of the Literature. Inflammation Research, 65, 847-852.
https://doi.org/10.1007/s00011-016-0963-9
[10] Van Zoonen, A.G.J.F., Hulzebos, C.V., Muller Kobold, A.C., et al. (2019) Serial Fecal Calprotectin in the Prediction of Necrotizing Enterocolitis in Preterm Neonates. Journal of Pediatric Surgery, 54, 455-459.
https://doi.org/10.1016/j.jpedsurg.2018.04.034
[11] Goold, E., Pearson, L. and Johnson, L.M. (2020) Can Fecal Calprotectin Serve as a Screen for Necrotizing Enterocolitis in Infants? Clinical Biochemistry, 84, 51-54.
https://doi.org/10.1016/j.clinbiochem.2020.06.015
[12] Hong, L., Huang, Y., Jiang, S., et al. (2023) Postnatal Dynamics and Clinical Associations of Fecal Calprotectin in Very Preterm Infants: Implications for Necrotizing Enterocolitis and Feeding Intolerance. Clinical and Translational Gastroenterology, 14, e00604.
https://doi.org/10.14309/ctg.0000000000000604
[13] Agakidou, E., Agakidis, C., Gika, H. and Sarafidis, K. (2020) Emerging Biomarkers for Prediction and Early Diagnosis of Necrotizing Enterocolitis in the Era of Metabolomics and Proteomics. Frontiers in Pediatrics, 8, Article 602255.
https://doi.org/10.3389/fped.2020.602255
[14] Coufal, S., Kokesova, A., Tlaskalova-Hogenova, H., et al. (2020) Urinary I-FABP, L-FABP, TFF-3, and SAA Can Diagnose and Predict the Disease Course in Necrotizing Enterocolitis at the Early Stage of Disease. Journal of Immunology Research, 2020, Article ID: 3074313.
https://doi.org/10.1155/2020/3074313
[15] El-Abd Ahmed, A., Hassan, M.H., Abo-Halawa, N., et al. (2020) Lactate and Intestinal Fatty Acid Binding Protein as Essential Biomarkers in Neonates with Necrotizing Enterocolitis: Ultrasonographic and Surgical Considerations. Pediatrics & Neonatology, 61, 481-489.
https://doi.org/10.1016/j.pedneo.2020.03.015
[16] Gregory, K.E., Winston, A.B., Yamamoto, H.S., et al. (2014) Urinary Intestinal Fatty Acid Binding Protein Predicts Necrotizing Enterocolitis. The Journal of Pediatrics, 164, 1486-1488.
https://doi.org/10.1016/j.jpeds.2014.01.057
[17] Ho, S.S.C., Keenan, J.I. and Day, A.S. (2020) The Role of Gastrointestinal-Related Fatty Acid-Binding Proteins as Biomarkers in Gastrointestinal Diseases. Digestive Diseases and Sciences, 65, 376-390.
https://doi.org/10.1007/s10620-019-05841-x
[18] Saran, A., Devegowda, D. and Doreswamy, S.M. (2020) Urinary Intestinal Fatty Acid Binding Protein for Diagnosis of Necrotizing Enterocolitis. Indian Pediatrics, 57, 798-800.
https://doi.org/10.1007/s13312-020-1955-y
[19] Liu, J., Yang, Q., Chen, Z., et al. (2021) TFF3 Mediates the NF-κB/COX2 Pathway to Regulate PMN-MDSCs Activation and Protect against Necrotizing Enterocolitis. European Journal of Immunology, 51, 1110-1125.
https://doi.org/10.1002/eji.202048768
[20] Liu, J., Li, Y., Feng, Y., et al. (2019) Patterned Progression of Gut Microbiota Associated with Necrotizing Enterocolitis and Late Onset Sepsis in Preterm Infants: A Prospective Study in a Chinese Neonatal Intensive Care Unit. PeerJ, 7, e7310.
https://doi.org/10.7717/peerj.7310
[21] Goldstein, G.P. and Sylvester, K.G. (2019) Biomarker Discovery and Utility in Necrotizing Enterocolitis. Clinics in Perinatology, 46, 1-17.
https://doi.org/10.1016/j.clp.2018.10.001
[22] Blackwood, B.P., Wood, D.R., Yuan, C.Y., Nicolas, J.D., Griffiths, A., Mestan, K. and Hunter, C.J. (2015) Urinary Claudin-2 Measurements as a Predictor of Necrotizing Enterocolitis: A Pilot Study. Journal of Neonatal Surgery, 4, 43.
https://doi.org/10.47338/jns.v4.457
[23] Thuijls, G., Derikx, J.P., Van Wijck, K., et al. (2010) Non-Invasive Markers for Early Diagnosis and Determination of the Severity of Necrotizing Enterocolitis. Annals of Surgery, 251, 1174-1180.
https://doi.org/10.1097/SLA.0b013e3181d778c4
[24] Chen, R., Chen, Q., Zheng, J., et al. (2023) Serum Amyloid Protein A in Inflammatory Bowel Disease: From Bench to Bedside. Cell Death Discovery, 9, Article No. 154.
https://doi.org/10.1038/s41420-023-01455-5
[25] Reisinger, K.W., Van Der Zee, D.C., Brouwers, H.A., et al. (2012) Noninvasive Measurement of Fecal Calprotectin and Serum Amyloid a Combined with Intestinal Fatty Acid-Binding Protein in Necrotizing Enterocolitis. Journal of Pediatric Surgery, 47, 1640-1645.
https://doi.org/10.1016/j.jpedsurg.2012.02.027
[26] Reisinger, K.W., Kramer, B.W., Van Der Zee, D.C., et al. (2014) Non-Invasive Serum Amyloid A (SAA) Measurement and Plasma Platelets for Accurate Prediction of Surgical Intervention in Severe Necrotizing Enterocolitis (NEC). PLOS ONE, 9, e90834.
https://doi.org/10.1371/journal.pone.0090834
[27] Duchon, J., Barbian, M.E. and Denning, P.W. (2021) Necrotizing Enterocolitis. Clinics in Perinatology, 48, 229-250.
https://doi.org/10.1016/j.clp.2021.03.002
[28] Tarracchini, C., Milani, C., Longhi, G., et al. (2021) Unraveling the Microbiome of Necrotizing Enterocolitis: Insights in Novel Microbial and Metabolomic Biomarkers. Microbiology Spectrum, 9, e0117621.
https://doi.org/10.1128/Spectrum.01176-21
[29] Feng, J., He, Y., Liu, D., et al. (2019) The Constitution and Functional Prediction of the Microbiota in Necrotizing Enterocolitis with a Gestational Age of over 28 Weeks. Medicine, 98, e17206.
https://doi.org/10.1097/MD.0000000000017206
[30] Saturio, S., Nogacka, A.M., Suárez, M., et al. (2021) Early-Life Development of the Bifidobacterial Community in the Infant Gut. International Journal of Molecular Sciences, 22, Article 3382.
https://doi.org/10.3390/ijms22073382
[31] Du, T.T., Liu, X.C., He, Y., et al. (2023) Changes of Gut Microbiota and Tricarboxylic Acid Metabolites May Be Helpful in Early Diagnosis of Necrotizing Enterocolitis: A Pilot Study. Frontiers in Microbiology, 14, Article 1119981.
https://doi.org/10.3389/fmicb.2023.1119981
[32] Hosfield, B.D., Drucker, N.A., Pecoraro, A.R., et al. (2021) The Assessment of Microbiome Changes and Fecal Volatile Organic Compounds during Experimental Necrotizing Enterocolitis. Journal of Pediatric Surgery, 56, 1220-1225.
https://doi.org/10.1016/j.jpedsurg.2021.02.043
[33] Masi, A.C., Embleton, N.D., Lamb, C.A., et al. (2021) Human Milk Oligosaccharide DSLNT and Gut Microbiome in Preterm Infants Predicts Necrotising Enterocolitis. Gut, 70, 2273-2282.
https://doi.org/10.1136/gutjnl-2020-322771
[34] Neu, J. (2020) Necrotizing Enterocolitis: A Multi-Omic Approach and the Role of the Microbiome. Digestive Diseases and Sciences, 65, 789-796.
https://doi.org/10.1007/s10620-020-06104-w
[35] Pammi, M., Cope, J., Tarr, P.I., et al. (2017) Intestinal Dysbiosis in Preterm Infants Preceding Necrotizing Enterocolitis: A Systematic Review and Meta-Analysis. Microbiome, 5, Article No. 31.
https://doi.org/10.1186/s40168-017-0248-8
[36] Berkhout, D.J.C., Niemarkt, H.J., De Boer, N.K.H., et al. (2018) The Potential of Gut Microbiota and Fecal Volatile Organic Compounds Analysis as Early Diagnostic Biomarker for Necrotizing Enterocolitis and Sepsis in Preterm Infants. Expert Review of Gastroenterology & Hepatology, 12, 457-470.
https://doi.org/10.1080/17474124.2018.1446826
[37] Garner, C.E., Ewer, A.K., Elasouad, K., et al. (2009) Analysis of Faecal Volatile Organic Compounds in Preterm Infants Who Develop Necrotising Enterocolitis: A Pilot Study. Journal of Pediatric Gastroenterology and Nutrition, 49, 559-565.
https://doi.org/10.1097/MPG.0b013e3181a3bfbc
[38] De Meij, T.G., Van Der Schee, M.P., Berkhout, D.J., et al. (2015) Early Detection of Necrotizing Enterocolitis by Fecal Volatile Organic Compounds Analysis. The Journal of Pediatrics, 167, 562-567.E1.
https://doi.org/10.1016/j.jpeds.2015.05.044
[39] Probert, C., Greenwood, R., Mayor, A., et al. (2020) Faecal Volatile Organic Compounds in Preterm Babies at Risk of Necrotising Enterocolitis: The DOVE Study. ADC Fetal & Neonatal Edition, 105, 474-479.
https://doi.org/10.1136/archdischild-2019-318221
[40] Hosfield, B.D., Pecoraro, A.R., Baxter, N.T., et al. (2020) The Assessment of Fecal Volatile Organic Compounds in Healthy Infants: Electronic Nose Device Predicts Patient Demographics and Microbial Enterotype. Journal of Surgical Research, 254, 340-347.
https://doi.org/10.1016/j.jss.2020.05.010
[41] Martins, R.D.S., Kooi, E.M.W., Poelstra, K., et al. (2023) The Role of Intestinal Alkaline Phosphatase in the Development of Necrotizing Enterocolitis. Early Human Development, 183, Article ID: 105797.
https://doi.org/10.1016/j.earlhumdev.2023.105797
[42] Kampanatkosol, R., Thomson, T., Habeeb, O., et al. (2014) The Relationship between Reticulated Platelets, Intestinal Alkaline Phosphatase, and Necrotizing Enterocolitis. Journal of Pediatric Surgery, 49, 273-276.
https://doi.org/10.1016/j.jpedsurg.2013.11.037
[43] Heath, M., Buckley, R., Gerber, Z., et al. (2019) Association of Intestinal Alkaline Phosphatase with Necrotizing Enterocolitis Among Premature Infants. JAMA Network Open, 2, e1914996.
https://doi.org/10.1001/jamanetworkopen.2019.14996
[44] Sugino, H. and Sawada, Y. (2022) Influence of S100A2 in Human Diseases. Diagnostics, 12, Article 1756.
https://doi.org/10.3390/diagnostics12071756
[45] Däbritz, J., Jenke, A., Wirth, S. and Foell, D. (2012) Fecal Phagocyte-Specific S100A12 for Diagnosing Necrotizing Enterocolitis. The Journal of Pediatrics, 161, 1059-1064.
https://doi.org/10.1016/j.jpeds.2012.06.003
[46] Pham, T., Lau, Z.J., Chen, S.H.A., et al. (2021) Heart Rate Variability in Psychology: A Review of HRV Indices and an Analysis Tutorial. Sensors, 21, Article 3998.
https://doi.org/10.3390/s21123998
[47] Al-Shargabi, T., Reich, D., Govindan, R.B., et al. (2018) Changes in Autonomic Tone in Premature Infants Developing Necrotizing Enterocolitis. American Journal of Perinatology, 35, 1079-1086.
https://doi.org/10.1055/s-0038-1639339
[48] Meister, A.L., Gardner, F.C., Browning, K.N., et al. (2021) Vagal Tone and Proinflammatory Cytokines Predict Feeding Intolerance and Necrotizing Enterocolitis Risk. Advances in Neonatal Care, 21, 452-461.
https://doi.org/10.1097/ANC.0000000000000959
[49] Meister, A.L., Doheny, K.K. and Travagli, R.A. (2019) Necrotizing Enterocolitis Attenuates Developmental Heart Rate Variability Increases in Newborn Rats. Neurogastroenterology & Motility, 31, e13484.
https://doi.org/10.1111/nmo.13484
[50] Rusconi, B., Jiang, X., Sidhu, R., et al. (2018) Gut Sphingolipid Composition as a Prelude to Necrotizing Enterocolitis. Scientific Reports, 8, Article No. 10984.
https://doi.org/10.1038/s41598-018-28862-4
[51] Thomaidou, A., Chatziioannou, A.C., Deda, O., et al. (2019) A Pilot Case-Control Study of Urine Metabolomics in Preterm Neonates with Necrotizing Enterocolitis. Journal of Chromatography B, 1117, 10-21.
https://doi.org/10.1016/j.jchromb.2019.04.019
[52] Thibault, M.P., Tremblay, É., Horth, C., et al. (2022) Lipocalin-2 and Calprotectin as Stool Biomarkers for Predicting Necrotizing Enterocolitis in Premature Neonates. Pediatric Research, 91, 129-136.
https://doi.org/10.1038/s41390-021-01680-7
[53] Konishi, K.I., Yoshida, M., Nakao, A., et al. (2019) Prostaglandin E-Major Urinary Metabolite as a Noninvasive Surrogate Marker for Infantile Necrotizing Enterocolitis. Journal of Pediatric Surgery, 54, 1584-1589.
https://doi.org/10.1016/j.jpedsurg.2018.08.044