基于大豆磷脂的氮磷掺杂碳量子点测定环境水样中的高锰酸盐
Determination of Permanganate in Environmental Water Samples Based on Nitrogen and Phosphorus Doped Carbon Dots Derived from Soybean Phospholipids
DOI: 10.12677/OJNS.2023.111006, PDF, HTML, XML, 下载: 238  浏览: 372  科研立项经费支持
作者: 黄 高, 李博聪, 李俊丽, 闫新雨, 何梦瑶, 向国强*:河南工业大学化学化工学院,河南 郑州
关键词: 大豆磷脂掺杂碳量子点还原态碳量子点高锰酸盐环境水样Soybean Phospholipids Doped Carbon Dots Reduced Carbon Dot Permanganate Environmental Water Samples
摘要: 以大豆磷脂为碳源,采用一步水热法成功制备了氮、磷共掺杂碳量子点(N, P-CDs)。采用KBH4对所制备的N,P-CDs进行还原处理后,得到还原态氮磷掺杂碳量子点(r-N, P-CDs)。r-N,P-CDs具有蓝色荧光(Ex 340 nm, Em 425 nm),荧光量子产率为10%。通过研究发现,在酸性条件下,高锰酸盐( )通过氧化作用而对r-N,P-CDs具有明显的猝灭作用,基于该荧光猝灭效应,建立了MnO4-荧光传感分析方法。该方法检出限(3σ)为10.0 ng∙mL−1,相对标准偏差(RSD)为1.2% (c = 1.0 μg∙mL−1, n = 15),其中线性范围分别为0.1~2 μg∙mL−1和5~50 μg∙mL−1。所建立的分析方法成功应用于环境水样中MnO4-的荧光测定,加标回收实验的回收率在94.0%~113%的范围。
Abstract: Nitrogen and phosphorus co-doped carbon dots (N, P-CDs) were successfully fabricated by a one-step hydrothermal method using soybean phospholipids as the carbon source. The reduced N, P-CDs (r-N, P-CDs) were obtained after the reduction by KBH4. The r-N, P-CDs possess blue fluorescence (Ex 340 nm, Em 425 nm) with a fluorescence quantum yield of 10%. It was found that the fluorescence of r-N, P-CDs could be quantitatively quenched by permanganate (MnO4-) through oxidation reaction under acidic media. Based on this fluorescence quenching effect, a new fluorescence sensing method for was developed. The detection limit (3σ) of the developed method is 10.0 ng∙mL−1, the relative standard deviation (RSD) is 1.2% (c = 1.0 μg∙mL−1, n = 15), and the linear range is from 0.1 to 2 μg∙mL−1 and from 5 to 50 μg∙mL−1, respectively. The method was successfully applied to the determination of MnO4- in environmental water samples with recoveries in the recoveries range of 94.0%~113%.
文章引用:黄高, 李博聪, 李俊丽, 闫新雨, 何梦瑶, 向国强. 基于大豆磷脂的氮磷掺杂碳量子点测定环境水样中的高锰酸盐[J]. 自然科学, 2023, 11(1): 46-53. https://doi.org/10.12677/OJNS.2023.111006

1. 引言

高锰酸盐( MnO 4 )是一种典型的强氧化离子,广泛应用于饮用水和污水处理中,用于去除浊度、藻类、有机污染物等。研究表明,当遇到有机化合物时,它能迅速释放新生的氧气,通过氧化活性基因 [1],对杀死细菌起着至关重要的作用。另一方面,异常水平的 MnO 4 可引发不良影响,从而诱发各种严重疾病,如胃肠道窘迫、食道出血、呼吸道损伤等,对人体健康有害 [2] [3]。考虑到这些因素,开发可靠、快速和精确的传感器来监测 MnO 4 水平是非常必要的 [4]。

传统的 MnO 4 检测方法,包括原子吸收光谱法(AAS) [5] [6]、分光光度法 [7]、电化学方法 [8]、色谱法 [9] 和电感耦合等离子体发射光谱法/质谱法(ICP-AES/MS) [10] [11],这些方法都需要昂贵的仪器和复杂的处理方法 [12]。由于基于荧光探针的荧光分析法具有灵敏度高、选择性高、响应快等特点受到了研究者的关注 [13] [14],不同类型的荧光探针,包括碳量子点(Carbon dots, CDs) [14] [15],金属有机框架(MOF) [16],金属配位聚合物 [13],有机荧光分子 [17] 等,成功应用于水样中 MnO 4 的灵敏检测。

CDs因其细胞毒性低、生物相容性高、化学和光稳定性好、制备方法简单、发射可调等优点而受到广泛关注 [18] [19]。它们已广泛应用于药物递送 [20]、传感分析 [21] [22]、生物成像 [23]、光催化 [24] 和光电器件 [25]。杂原子掺杂是改善CDs光学性能的最广泛的策略之一。生物质除了含碳量高,常常还含有N,S和P等杂原子,是制备掺杂CDs理想前驱体 [26] [27]。

本文以大豆磷脂为碳源,通过一步水热法制备了N,P掺杂荧光CDs (N, P-CDs),通过KBH4还原作用得到了还原态氮磷掺杂碳量子点(r-N, P-CDs)。其中r-N,P-CDs的最佳荧光发射波长为425 nm (激发波长340 nm),且在酸性条件下, MnO 4 的氧化作用可以明显地猝灭r-N,P-CDs的荧光。基于这种氧化猝灭作用,建立了测定环境水样中 MnO 4 分析新方法。该方法操作简单、选择性好、灵敏度高,成功应用于实际样品的检测。

2 材料与方法

2.1. 仪器与试剂

r-N,P-CDs的透射电子显微镜(TEM)图像通过JEM-2011透射电子显微镜获得,使用荧光光谱仪(RF-6000,岛津,日本)收集激发和发射光谱,使用FL-TCSPC荧光光谱仪(Horiba Jobin Yvon,法国)测量CDs的荧光寿命,在WQF-510傅里叶变换红外(FT-IR)光谱仪(北京北分瑞利分析仪器(集团)有限公司,中国北京)上记录了r-N,P-CDs红外吸收光谱,r-N,P-CDs的UV-Vis光谱使用UV-紫外可见光谱仪(UV2600,岛津,日本)获得。

大豆磷脂由实验室制备(河南工业大学,化学化工学院),硼氢化钾(KBH4),高锰酸钾(KMnO4)以及透析袋(截留分子量500 Da)均购自上海阿拉丁生化科技股份有限公司。超纯水(18 MΩ∙cm−1)由Milli-Q净化设备(Millipore,美国)提供,整个实验过程中Britton-Robison (BR)缓冲溶液用于整个实验酸度的控制。其它化学试剂均为分析纯,使用前未进行任何纯化处理。

2.2. r-N,P-CDs的制备

称取6.50 g大豆磷脂置于烧杯中,加入蒸馏水(130 mL)后,加热至完全溶解。所得溶液冷却后转移至水热釜(容积400 mL)中,密封后的反应釜在230℃条件下加热反应8 h。反应釜自然冷却后,所得反应液经过滤除去固体不溶物后,加入10 mL BR缓冲液(pH1.0)和KBH4 (2.0 g),待溶液气泡完全消失后,继续加热煮沸反应液5 min以除去过量的KBH4。经KBH4还原处理后的溶液,采用透析的方法进行纯化(截留分子量500 Da,透析24 h),纯化后的碳量子点溶液用超纯水稀释10倍作为储备液,用于后续实验的表征。

2.3. 实验方法

将0.5 mL的r-N,P-CDs储备液与一定量的 M n O 4 标准溶液(或样品溶液)分别加入到10 mL比色管中,然后用BR缓冲液(pH4)定容至所需体积5 mL体积,混合均匀,在340 nm的激发波长下测定存在(I)和不存在(I0) M n O 4 时的荧光强度(发射峰425 nm),通过计算lg(I0/I)进行定量分析。

3. 结果与讨论

3.1. r-N,P-CDs的表征

通过TEM图像表明,r-N,P-CDs呈现为近球形。晶格间距为0.209 nm,这与石墨烯sp2(1120)晶面参数一致 [28]。在r-N,P-CDs的FT-IR光谱中,从图1(b)中以发现679、1080 cm−1的吸收峰对应于P-C、P-O的伸缩振动,1645 cm−1处的吸收峰对应于C=O的弯曲振动。3446 cm−1处的吸收峰对应于O-H的伸缩振动。以上结果表明,r-N,P-CDs主要由C、O、N、P四种元素组成。

通过XPS对r-N,P-CDs的元素组成和化学态进行表征,结果表明了r-N,P-CDs主要由C、O、N、P四种元素组成,其中图1(c)表示C1s可分解为284.60、285.34、286.15、286.36 eV四个峰,表明存在C-O、C-N、C-O和C=O [29]。图1(d)表示O1s可分解为530.17、531.39、532.36 eV三个单独峰,表明存在O-C、O=C和O-P/O=P [30]。图1(e)表示N1s可分解为397.82、399.05、399.97、402.54、406.74 eV五个单独峰,表明存在N-C、吡啶、吡咯、N-H、N-O [31]。图1(f)表示P2s分解为132.76、133.57 eV两个单独峰,表明存在P-O、P=O [32]。XPS分析结果的元素信息与FT-IR的光谱分析结果一致。

Figure 1. (a) TEM images of r-N, P-CDs, (b) FT-IR spectra, (c) high-resolution XPS spectra of C1s, (d) high-resolution XPS spectra of O1s, (e) high-resolution XPS spectra of N1s, (f) high-resolution XPS spectra of P2p

图1. (a) r-N,P-CDs 的TEM 图像,(b) FT-IR 光谱,(c) C1s高分辨率XPS分峰图,(d) O1s高分辨率XPS分峰图,(e) N1s高分辨率XPS分峰图,(f) P2p高分辨率XPS分峰图

3.2. r-N,P-CDs的光学性质

图2(a)为r-N,P-CDs的紫外–可见吸收光谱,r-N,P-CDs在280 nm处有一个明显的吸收峰,这一吸收峰归因于C=C的π-π*跃迁 [33]。图2(b)为在不同激发波长条件下r-N,P-CDs的荧光发射光谱,从图中可以看出其具有明显的激发波长依赖性,在激发波长300~370 nm时,荧光发射波长随激发波长的增大而红移。而荧光发射强度则随着激发波长增大呈现出先增至最高强度后开始逐渐降低的趋势。当激发波长为340 nm时,荧光发射强度达到最大值,此时发射波长为425 nm。

通过实验还研究了不同pH对r-N,P-CDs荧光强度的影响,结果如图2(c)所示,r-N,P-CDs的荧光强度在pH1~11范围内几乎不变,仅是在强碱性条件下,r-N,P-CDs的荧光强度出现明显的降低。这表明,r-N,P-CDs具有良好的酸碱稳定性。考察了温度对r-N,P-CDs荧光的影响(图2(d)),从图中可以看出在30℃~80℃范围内,随着温度逐渐升高,r-N,P-CDs的荧光强度逐渐降低,这与多数文献报道的结果一致。

3.3. 荧光传感分析 M n O 4 -

实验发现, M n O 4 在酸性介质中,对r-N,P-CDs的荧光具有明显的猝灭作用,这是由于 M n O 4 对r-N,P-CDs表面基团氧化作用的结果。研究了 M n O 4 对r-N,P-CDs 的荧光猝灭作用的影响。图3(a)表明,在pH4条件下, M n O 4 对r-N,P-CDs的荧光猝灭作用最强,后续实验选择pH4为最佳pH。

图3(b)所示,r-N,P-CDs的最佳发射波长处(425 nm)的荧光强度出现了不同程度的降低。且 M n O 4 的浓度与log(I0/I)呈现良好的线性关系(如图3(b)插图),其中I0和I分别为不存在和存在 M n O 4 的情况下r-N,P-CDs的荧光强度,当 M n O 4 浓度在0.1~5 μg∙mL−1范围时,对应的线性拟合方程为lg(I0/I) = 0.09561C + 0.0975,相关系数R2为0.9983;当 M n O 4 浓度在5~50 μg∙mL−1时,其对应的线性拟合方程为lg(I0/I) = 0.01845C + 0.24089,相关系数R2为0.9988。根据3σ的原理,计算该方法的检出限为0.01 μg∙mL−1,相对标准偏(RSD)为1.2% (c = 1 μg∙mL−1, n = 11),表明该方法具有良好的可行性。此外,还对 M n O 4 对r-N,P-CDs的荧光猝灭机理进行了探究。分别测定了r-N,P-CDs与 M n O 4 作用前后的荧光寿命,结果发现,与 M n O 4 作用之后,r-N,P-CDs的荧光寿命由未作用时的3.02 ns变为2.86 ns。r-N,P-CDs荧光寿命的变化表明了荧光猝灭机理是动态猝灭。

Figure 2. (a) Ultraviolet visible absorption spectra of r-N, P-CDs, (b) r-N, P-CDs fluorescence spectra, (c) pH effect on r-N, P-CDs fluorescence intensity, (d) temperature effect on r-N, P-CDs fluorescence intensity

图2. (a) r-N,P-CDs的紫外-可见吸收光谱图,(b) r-N,P-CDs荧光光谱图,(c) pH对r-N,P-CDs荧光强度的影响,(d) 温度对r-N,P-CDs荧光强度的影响

Figure 3. (a) Effect of pH on fluorescence intensity of r-N, P-CDs quenched by MnO 4 , (b) Different concentrations of MnO 4 (from 0.1 μg∙mL−1 to 5 μg∙mL−1 and 5 μg∙mL−1 to 50 μg∙mL−1) fluorescence response of r-N, P-CDs in the presence of μg∙mL−1 (illustration: calibration curve of log (I0/I) and MnO 4 concentration)

图3. (a) pH对 MnO 4 猝灭r-N,P-CDs荧光强度的影响,(b) 不同浓度的 MnO 4 (从0.1 μg∙mL−1到5 μg∙mL−1及5 μg∙mL−1到50 μg∙mL−1)存在下r-N,P-CDs荧光响应(插图:log(I0/I)和 MnO 4 浓度的校准曲线)

3.4. M n O 4 - 传感分析的选择性

为了客观评析r-N,P-CDs的选择性,选择常见金属离子为研究对象,考察了金属离子对r-N,P-CDs荧光的影响。结果如图4所示,大多数金属离子(Ni2+, Pb2+, Co2+, Cd2+, Zn2+, Cu2+, Mn2+, Hg2+, Mg2+, Na+, K+, Ag+, 10 μg∙mL−1)对r-N,P-CDs荧光没有明显的影响;而氧化性 Cr 2 O 7 2 (5 μg∙mL−1)对r-N,P-CDs荧光也有明显的猝灭作用。幸运的是,大多数环境水样中 Cr 2 O 7 2 含量不超过5 μg∙mL−1。因此,r-N,P-CDs 对 MnO 4 的具有高选择性。

Figure 4. Effect of different metal ions on fluorescence intensity of r-N, P-CDs

图4. 不同金属离子对r-N,P-CDs荧光强度的影响

3.5. 样品的测定

为了客观评析该方法的可行性,将所建立的分析方法应用于河南工业大学环境工程学院提供的不同环境水样中痕量 MnO 4 的测定,同时进行加标回收实验。测定的结果如表1所示,其中加标回收率在94.0%至113%之间。

Table 1. Determination of MnO 4 − in actual water samples (n = 3, mean ± SD, μg∙mL−1)

表1. 实际水样中 MnO 4 的测定(n = 3, mean ± SD, μg∙mL−1)

4. 结论

成功以磷脂作为碳源,通过水热反应,利用KBH4还原性高效制备了具有蓝色荧光的r-N,P-CDs,并利用其还原性建立了基于r-N,P-CDs的 MnO 4 分析新方法,不仅操作简单,效率高,同时选择性好,灵敏度高。该荧光测定法已成功应用于环境水样中 MnO 4 的荧光传感,且对环境水样中 MnO 4 的痕量、快速测定具有很好的发展前景。

基金项目

河南工业大学科教融合项目。

NOTES

*通讯作者。

参考文献

[1] Jiang, X.H., Qin, D.M., Mo, G.C., et al. (2019) Facile Preparation of Boron and Nitrogen Codoped Green Emission Carbon Quantum Dots for Detection of Permanganate and Captopril. Analytical Chemistry, 91, 11455-11460
https://doi.org/10.1021/acs.analchem.9b02938
[2] Ramseier, M.K., Peter, A., Traber, J., et al. (2011) For-mation of Assimilable Organic Carbon during Oxidation of Natural Waters with Ozone, Chlorine Dioxide, Chlorine, Permanganate, and Ferrate. Water Research, 45, 2002-2010.
https://doi.org/10.1016/j.watres.2010.12.002
[3] Adusumalli, V.N.K.B., Lis, S., Runowski, M., et al. (2020) Adenosine Capped CaF2:Eu3+ Nanocrystals and Their Applications in Permanganate Detection. Optical Materials, 107, Article ID: 110048.
https://doi.org/10.1016/j.optmat.2020.110048
[4] Dan, C., Zhao, Z., Feng, J., et al. (2021) Lyso-some-Targeted Red-Fluorescent Carbon Dots for Turn-On Detection of Permanganate and pH in Vivo and in Vitro. Sensors and Actuators B: Chemical, 349, Article ID: 130774.
https://doi.org/10.1016/j.snb.2021.130774
[5] Citak, D., Tuzen, M. and Soylak, M. (2010) Speciation of Mn(II), Mn(VII) and Total Manganese in Water and Food Samples by Coprecipitation-Atomic Absorption Spec-trometry Combination. Journal of Hazardous Materials, 173, 773-777.
https://doi.org/10.1016/j.jhazmat.2009.09.004
[6] Chen, S., Qin, X., Gu, W., et al. (2016) Speciation Analysis of Mn(II)/Mn(VII) Using Fe3O4@ionic Liquids-β-Cyclodextrin Polymer Magnetic Solid Phase Extraction Coupled with ICP-OES. Talanta, 161, 325-332.
https://doi.org/10.1016/j.talanta.2016.08.062
[7] Liu, X., Cai, H., Zou, J., et al. (2018) Spectrophotometric Determination of Trace Permanganate in Water with N,N- diethyl-p-phenylenediamine (DPD). Chemosphere, 212, 604-610.
https://doi.org/10.1016/j.chemosphere.2018.08.087
[8] Qiu, B., Xue, L., Wu, Y., et al. (2011) Mechanism Study on Inorganic Oxidants Induced Inhibition of Electrochemiluminescence and Its Application for Sensitive Determination of Some Inorganic Oxidants. Talanta, 85, 339-344.
https://doi.org/10.1016/j.talanta.2011.03.063
[9] Ding, B., Liu, S.X., Cheng, Y., et al. (2016) Heterometallic Alkaline Earth-Lanthanide Ba II-La III Microporous Metal-Organic Framework as Bifunctional Luminescent Probes of Al3+ and . Inorganic Chemistry, 55, 4391-4402.
https://doi.org/10.1021/acs.inorgchem.6b00111
[10] Oleszczuk, N., Castro, J., Dasilva, M., et al. (2007) Method Development for the Determination of Manganese, Cobalt And Copper in Green Coffee Comparing Direct Solid Sampling Electrothermal Atomic Absorption Spectrometry and Inductively Coupled Plasma Optical Emission Spectrometry. Talanta, 73, 862-869.
https://doi.org/10.1016/j.talanta.2007.05.005
[11] Chen, S., Zhan, X., Lu, D., et al. (2008) Study on Adsorp-tion Behavior of Mn(II) and Mn(VII) on Modified Carbon Nanofibers and Their Determination by Inductively Coupled Plasma Mass Spectrometry. Atomic Spectroscopy, 29, 45-50.
[12] Chen, W., Lin, H., Wu, Y., et al. (2022) Fluorescent Probe of Nitrogen-Doped Carbon Dots Derived from Biomass for the Sensing of in Polluted Water Based on Inner Filter Effect. Advanced Composites and Hybrid Materials, 5, 2378-2386.
https://doi.org/10.1007/s42114-022-00443-0
[13] Zhao, X.X., Qin, Z.B., Li, Y.H., et al. (2018) Two Lumi-nescent Cobalt(II) Coordination Polymers for Selective Sensing of in Water. Transition Metal Chemistry, 43, 597-604.
https://doi.org/10.1007/s11243-018-0248-y
[14] Hu, Q., Liu, L., Sun, H., et al. (2020) An Ul-tra-Selective Fluorescence Method with Enhanced Sensitivity for the Determination of Manganese (VII) in Food Stuffs Using Carbon Quantum Dots as Nanoprobe. Journal of Food Composition and Analysis, 88, Article ID: 103447.
https://doi.org/10.1016/j.jfca.2020.103447
[15] Naik, V.M., Gunjal, D.B., Gore, A.H., et al. (2020) Nitrogen-Doped Carbon Dot Threads as a “Turn-Off” Fluorescent Probe for Permanganate Ions and Its Hydrogel Hybrid as a Naked Eye Sensor for Gold(III) Ions. Analytical and Bioanalytical Chemistry, 412, 2993-3003.
https://doi.org/10.1007/s00216-020-02550-7
[16] Abdollahi, N. and Morsali, A. (2019) Highly Sensitive Flu-orescent Metal-Organic Framework as a Selective Sensor of MnVII and CrVI Anions ( / / ) in Aqueous Solutions. Analytica Chimica Acta, 1064, 119-125.
https://doi.org/10.1016/j.aca.2019.02.061
[17] Shi, G., Shahid, M.A., Yousuf, M., et al. (2019) A “Turn-On” Fluorescent Probe for the Detection of Permanganate in Aqueous Media. Chemical Communications, 55, 1470-1473.
https://doi.org/10.1039/C8CC08958B
[18] Yang, Y., Huo, D., Wu, H., et al. (2018) N,P-Doped Carbon Quantum Dots as a Fluorescent Sensing Platform for Carbendazim Detection Based on Fluorescence Resonance Energy Transfer. Sensors and Actuators B: Chemical, 274, 296-303.
https://doi.org/10.1016/j.snb.2018.07.130
[19] Bagheri, S., TermehYousefi, A. and Mehrmashhadi, J. (2019) Carbon Dot-Based Fluorometric Optical Sensors: An Overview. Reviews in Inorganic Chemistry, 39, 179-197.
https://doi.org/10.1515/revic-2019-0002
[20] Hettiarachchi, S.D., Graham, R.M., Mintz, K.J., et al. (2019) Triple Conjugated Carbon Dots as a Nano-Drug Delivery Model for Glioblastoma Brain Tumors. Nanoscale, 11, 6192-6205.
https://doi.org/10.1039/C8NR08970A
[21] Xu, D., Lin, Q. and Chang, H. (2020) Recent Ad-vances and Sensing Applications of Carbon Dots. Small Methods, 4, Article ID: 1900387.
https://doi.org/10.1002/smtd.201900387
[22] Ma, X., Zhong, W., et al. (2020) “Self-Heating” Enabled One-Pot Synthesis of Fluorescent Carbon Dots. Engineered Science, 9, 44-49.
https://doi.org/10.30919/es8d805
[23] Li, H., Yan, X., Kong, D., et al. (2020) Recent Advances in Carbon Dots for Bioimaging Applications. Nanoscale Horizons, 5, 218-234.
https://doi.org/10.1039/C9NH00476A
[24] Zhang, Z., Yi, G., Li, P., et al. (2020) A Minireview on Doped Carbon Dots for Photocatalytic and Electrocatalytic Applications. Nanoscale, 12, 13899-13906.
https://doi.org/10.1039/D0NR03163A
[25] Jiang, X., Chen, Y., Meng, X., et al. (2022) The Impact of Elec-trode with Carbon Materials on Safety Performance of Lithium-Ion Batteries: A Review. Carbon, 191, 448-470.
https://doi.org/10.1016/j.carbon.2022.02.011
[26] Hu, C., Su, T.R., Lin, T.J., et al. (2018) Yellowish and Blue Luminescent Graphene Oxide Quantum Dots Prepared via a Microwave-Assisted Hydrothermal Route Using H2O2 and KMnO4 as Oxidizing Agents. New Journal of Chemistry, 42, 3999-4007.
https://doi.org/10.1039/C7NJ03337K
[27] Wu, L., Long, R., Li, T., et al. (2020) One-Pot Fabrication of Du-al-Emission and Single-Emission Biomass Carbon Dots for Cu2+ and Tetracycline Sensing and Multicolor Cellular Imaging. Analytical and Bioanalytical Chemistry, 412, 7481-7489.
https://doi.org/10.1007/s00216-020-02882-4
[28] Alam, A.M., Park, B.Y., Ghouri, Z.K., et al. (2015) Syn-thesis of Carbon Quantum Dots from Cabbage with Down- and Up-Conversion Photoluminescence Properties: Excellent Imaging Agent for Biomedical Applications. Green Chemistry, 17, 3791-3797.
https://doi.org/10.1039/C5GC00686D
[29] Wang, W., Chen, J., Wang, D., et al. (2021) Facile Synthesis of Biomass Waste-Derived Fluorescent N, S, P Co-Doped Carbon Dots for Detection of Fe3+ Ions in Solutions and Living Cells. Analytical Methods, 13, 789-795.
https://doi.org/10.1039/D0AY02186E
[30] Zhao, D., Zhang, Z., Liu, X., et al. (2021) Rapid and Low-Temperature Synthesis of N, P Co-Doped Yellow Emitting Carbon Dots and Their Applications as Antibacterial Agent and Detection Probe to Sudan Red I. Materials Science and Engineering: C, 119, Article ID: 111468.
https://doi.org/10.1016/j.msec.2020.111468
[31] Yan, Y., Zhang, H., Du, F., et al. (2021) N-Doped Carbon Dots for the Fluorescence and Colorimetry Dual-Mode Detection of Curcumin. The Analyst, 146, 5357-5361.
https://doi.org/10.1039/D1AN01212F
[32] Tammina, S.K., Yang, D., Koppala, S., et al. (2019) Highly Pho-toluminescent N, P Doped Carbon Quantum Dots as a Fluorescent Sensor for the Detection of Dopamine and Temperature. Journal of Photochemistry and Photobiology B: Biology, 194, 61-70.
https://doi.org/10.1016/j.jphotobiol.2019.01.004
[33] Yang, H., Long, Y., Li, H., et al. (2018) Carbon Dots Synthesized by Hydrothermal Process via Sodium Citrate and NH4HCO3 for Sensitive Detection of Temperature and Sunset Yellow. Journal of Colloid and Interface Science, 516, 192-201.
https://doi.org/10.1016/j.jcis.2018.01.054