锂硫电池用铁基化合物催化剂的研究现状
Research Status of Iron-Based Compounds as Catalysis for Lithium-Sulfur Batteries
DOI: 10.12677/MS.2024.142016, PDF, HTML, XML, 下载: 86  浏览: 268  科研立项经费支持
作者: 刘晓彰*, 郭满川, 朱金良:广西大学资源环境与材料学院,特色金属材料与组合结构全寿命安全国家重点实验室,广西 南宁
关键词: 锂硫电池铁基化合物催化剂 Lithium-Sulfur Batteries Iron-Based Compounds Catalysis
摘要: 锂硫电池因具有突出理论比容量和能量密度而被认为是有望替代锂电池的新一代储能系统的强有力竞争者。但它所存在的穿梭效应等问题导致了电池容量的快速下降和差的循环稳定性,阻碍了锂硫电池商业化的进程。过渡金属化合物普遍具有优异的催化性能以及独特的电子结构,其中的铁基化合物因其低成本、良好的导电性以及强的催化活性获得了广泛的关注。本文重点综述了锂硫电池用铁基化合物催化剂的最新进展,并展望了其未来的发展趋势。
Abstract: Lithium-sulfur battery was regarded as a strong competitor to the next generation of energy storage systems that are expected to replace lithium-ion batteries due to their outstanding theoretical specific capacity and energy density. However, the shuttle effect and other issues resulted in a rapid decrease in battery capacity and poor cycling stability, hindering the commercialization process of lithium-sulfur batteries. Transition metal compounds generally exhibit excellent catalytic performance and unique electronic structures, among which iron-based compounds have received widespread attention due to their low cost, excellent conductivity, and strong catalytic activity. This article focuses on the latest progresses of iron-based compounds used as catalysts for lithium-sulfur battery, and looks forward to their future development trends.
文章引用:刘晓彰, 郭满川, 朱金良. 锂硫电池用铁基化合物催化剂的研究现状[J]. 材料科学, 2024, 14(2): 130-141. https://doi.org/10.12677/MS.2024.142016

1. 引言

随着科技的进步和社会的发展,煤炭、石油等化石能源正在枯竭,寻找一种能够替代的新能源体系迫在眉睫 [1] 。各类可再生能源的不稳定性以及现有的以锂电池为主的储能系统低的理论容量,都越来越难以满足发展的需求。超级电容器 [2] 、钠离子电池 [3] 、空气电池 [4] 以及锂硫电池 [5] 等新型的储能系统得以被广泛的研究开发。

硫正极材料具有的如低成本、丰富的储量等固有特性使得锂硫电池系统成为了下一代储能系统的强有力的竞争者。但体积变化、穿梭效应、锂枝晶的生成以及不稳定性等问题阻碍了锂硫电池的进一步发展 [6] [7] [8] ,需要研究者提出科学有效的解决方案。研发正极载体材料 [9] 、改性隔膜和调整电解液配方等 [10] 方案均已被提出并进行了大量的研究。其中最有效简单的方案是开发合适的极性催化剂用以促进多硫化物(LiPSs)的化学吸附和催化转化以抑制穿梭效应,图1展示了穿梭效应的机理。

Figure 1. Schematic illustrations of shuttle effect [11]

图1. 穿梭效应示意图 [11]

铁基化合物作为最为常见的过渡金属材料之一,在锂离子电池和各类能源存储领域具有广泛的运用。其中,氧化铁 [12] 、碳化铁 [13] 、磷化铁 [14] 、硫化铁 [15] 等铁基化合物具有的良好的极性和催化活性,可以通过极性–极性相互作用化学地捕获可溶性LiPSs,并且促进其快速转化。然而,不同种类的铁基化合物在锂硫电池中起到的作用不尽相同,为了更好的筛选铁基催化剂材料,我们总结并介绍了近几年各类铁基化合物用于锂硫电池的研究现状(如图2),并分析了其在锂硫电池应用中面临的困难挑战和前景。

Figure 2. Display diagrams of various iron-based compounds used in the research of lithium-sulfur batteries

图2. 目前用于锂硫电池研究的各类铁基化合物的展示图

2. 锂硫电池中铁基化合物的研究进展

2.1. 氧化铁

氧化铁(包括FeO,Fe2O3,Fe3O4)因为成本低、容易获得、表面官能团强等,能够有效的捕获可溶多硫化锂抑制穿梭效应。早在2014年,Han等 [16] 利用普鲁士蓝作为原材料制备得到了大小均匀的多孔Fe2O3微立方体,使用其作为正极载体的锂硫电池首次观察到较高比容量和稳定的电化学循环,这意味着LiPSs的穿梭得到了明显的缓解。然而,氧化铁材料本征导电性低,且单一氧化铁材料尺寸难以控制,导致了活性位点的缺乏和稳定性不足。通过水热等原位合成方法有效强化了材料的空间容量并调控了材料尺寸(如图3(a)) [17] [18] ,复合材料表现出增强的LiPSs吸附和快速的氧化还原反应动力学,有效地抑制了LiPSs的穿梭和提高了硫的利用率。核壳结构 [12] [19] [20] 的设计(如图3(b))在空间上结合了氧化铁磁芯对LiPSs的强化学相互作用与导电碳壳提供的高效电子传输通道,保障了锂硫电池出色的速率性能,高容量和长循环寿命。原位测试(如图3(c))为电池的长期循环稳定性和高的库伦效率提供了合理的解释 [12] 。DFT计算(图3(d))结果从理论上揭示了Fe3O4对Li2Sn的强力极性–极性相互作用 [21] ,论证了实验结论的理论正确性。Li等 [22] 采用冷冻干燥法制备精细分散在氮掺杂多孔碳上的纳米级的Fe3O4 (nano-Fe3O4/PNC),如图3(e)所示,纳米级的Fe3O4可以有效捕获LiPSs,高分散性为LiPSs的催化转化提供了大量的反应位点。氧空位工程 [19] [23] 能够调节电子结构(如图3(f)),为改善电化学性能暴露更多的活性位点,在不牺牲活性位点的前提下提供了出色的倍率性能和稳定性。同一材料的不同晶面所具有的化学性质不尽相同,Li等 [24] 通过实验探究了调控α-Fe2O3不同晶面生长的方法,并利用DFT计算对比了LiPSs在α-Fe2O3的(110)和(104)晶面上吸附能的差异(如图3(g))。这为探索不同晶面金属氧化物对LiPSs的吸附能力提供了新的思路,为商业化开辟了可能性。综上所述,氧化铁本身具有极性和中等的催化活性,可以实现LiPSs的吸附–催化转化。而氧化铁材料与石墨烯、多孔碳等多孔材料的复合,可以改善电池电化学性能。此外,氧化铁的结构纳米化有助于提高催化活性并且为LiPSs的氧化还原反应提供大量的反应位点,有效地抑制LiPSs的穿梭效应,极大地改善了循环稳定性。

Figure 3. (a) TEM image of Fe2O3/rGO/CNT [17] . (b) Structure diagram of Fe2O3-x@C [19] . (c) In situ XRD contour plots of S/YS-27Fe3O4@C electrode in the first discharge/charge process within the voltage window of 1.7~2.8 V [12] . (d) DFT-calculated molecular structures and adsorption energies of Li2Sn and S8 on Fe3O4 [21] . (e) Optical photographs of Li2S6 solution treated with PNC, nano-Fe3O4/PNC, and Fe3O4/PNC for 30 min [22] . (f) Optimized configurations of Li2S6 molecule on different surfaces [19] . (g) Adsorption energies of the S8 cluster and Li2Sx (x = 1, 2, 4, 6, and 8) on the (104) and (110) facets of α-Fe2O3 [24]

图3. (a) Fe2O3/rGO/CNT的TEM图像 [17] 。(b) Fe2O3-x@C的结构示意图 [19] 。(c) 使用S/YS-27Fe3O4@C作为正极的锂硫电池在1.7~2.8 V电压范围内首圈充放电的原位XRD 等高线图 [12] 。(d) Li2Sn以及S8在Fe3O4表面吸附的DFT计算模型和吸附能 [21] 。(e) PNC,nano-Fe3O4/PNC以及Fe3O4/PNC吸附Li2S6溶液30分钟后的可视化图 [22] 。(f) Li2S6在不同表面上的优化构型 [19] 。(g) S8团簇和Li2Sx (x = 1, 2, 4, 6和8)在α-Fe2O3的(104)和(110)晶面的吸附能 [24]

2.2. 碳化铁

Figure 4. (a) Digital images of the ACT/S composite and ACT@Fe/Fe3C/S composite electrodes during the first discharge cycle in the liquid cell at the current density of 0.1 C [25] . (b) Long-term cycling performance of Fe3C@NCNT/G/S cathode at 1  C [13] . (c) i): The rate capability of Fe3C@N-C/S, N-C/S and SP/S at increasing current rates from 0.1 C to 5 C; ii): cycling performance at 0.5 C [26] . (d) N2 adsorption/desorption isotherm and pore size distributions (insert) of Fe3C/PB and PB [30] . (e) i): MD atomic structures of the S/MWCNT and S/Fe3C/MWCNT; ii): Sulfur infiltration process and HRTEM image of the nanotube wall, sulfur, and Fe3C particle [31]

图4. (a) ACT/S复合物和ACT@Fe/Fe3C/S复合电极在液体电池中0.1 C电流密度下首次放电循环下的可视化图片 [25] 。(b) Fe3C@NCNT/G/S正极在1 C下的长循环 [13] 。(c) i):Fe3C@N-C/S,N-C/S和SP/S电极在0.1~5 C范围内的倍率性能;ii):在0.5 C的长循环性能 [26] 。(d) Fe3C/PB和PB的氮气吸附/脱附曲线和孔径大小分布曲线(内置) [30] 。(e) i):S/MWCNT和S/Fe3C/MWCNT的MD原子结构;ii):硫的渗透过程和MWCNT、S8以及Fe3C颗粒的HRTEM图像 [31]

碳化铁(Fe3C)因其固有的磁性和优异的催化活性等特点,在锂硫电池上表现出特殊的LiPSs捕获方式和显著的催化能力。Gao等 [25] 提出了Fe3C存在于电池正极时,通过磁性形成内部磁场,能够以洛伦兹力改变LiPSs的溶解路径,从而促进LiPSs的捕捉,并将这种独特的机制被称为“屏蔽效应”。从图4(a)可以看到,ACT@Fe/Fe3C/S电极利用本征电场有效的将LiPSs限制在正极一侧,自发捕获LiPSs以提高硫的利用率。此外,Fe3C表现出优异的LiPSs催化活性,可以促进LiPSs快速转化。这种强力锚定作用和高的催化转化能力,有效抑制了LiPSs的穿梭。电磁性材料对LiPSs独特的捕获机制有希望最大限度的利用LiPSs并减轻穿梭效应,具有提高LiPSs利用率以及降低穿梭效应的可行性。将Fe3C负载在具有杂原子氮掺杂的碳材料上已经是一种提高循环稳定性的极为可行的方案 [13] [26] [27] [28] ,氮掺杂使碳材料获得了一定的导电性,结合Fe3C对LiPSs转化的催化效果得到了更好的电池性能(如图4(b)),大量的氮掺杂碳材料通过富含氮元素的前驱体如多巴胺和三聚氰胺等制备得到 [29] 。不同形貌碳材料的加入以及杂原子的掺杂在一定程度上有效提高了材料的导电性,为离子扩散和电子转移提供了更丰富的活性位点。Zhang等 [26] 模仿青蛙卵结构设计了空心Fe3C@N-C,大孔结构有效提高了硫的容纳率并能够缓解硫物种的体积变化,良好的导电性有利于离子传输,有效降低电池内阻并加速硫物种的转化。核壳结构材料实现了同位点进行体积缓解和催化转化的结合,提供了卓越的倍率性能以及出色的循环稳定性(如图4(c))。

此外,使用生物质碳材料作为Fe3C的基底材料,其极高的比表面积和孔隙结构有利于缓解充放电过程中的体积变化,简单安全制备过程也便于大规模工业化生产。Lei等 [30] 提出了一种利用苏铁叶同步碳化和Fe3C掺杂制备多功能复合材料Fe3C/PB的一步法策略,Fe3C纳米颗粒得以均匀分布在生物炭表面,与硫结合后产生的Fe-S键证实了其对穿梭效应的缓解能力。高达2723 cm2·g−1的比表面积(如图4(d))提供了大量的活性位点,极高的孔隙体积为缓解体积膨胀做出了巨大的贡献。Cheng等 [31] 以棉花为原料大规模的制备了多壁碳纳米管封装Fe/Fe3C (Fe/Fe3C-MWCNT),利用生物纤维素热解产生的气体进一步影响材料的孔结构并帮助Fe/Fe3C在空隙中生成,碳化生成的无定形碳能够进一步石墨化生长成碳纳米管并对原位生成的Fe/Fe3C进行封装。如图4(e)所示,仿真和计算结果都证明了Fe3C纳米颗粒对碳纳米管在充放电过程中形变的缓解,这抑制了LiPSs的溶解,保障了对硫物种的收纳帮助提供优越的循环性能。总之,Fe3C独特的磁性、电子结构和催化能力有利于它们在锂硫电池中的应用。

2.3. 磷化铁

作为一种高效的电催化剂,磷化铁(FeP,Fe2P和Fe3P)具有良好的导电性、热稳定性以及化学稳定性等,同时,磷的独特的电子轨道分配提高了磷化物催化剂的活性 [32] [33] ,促进了磷化铁在催化和储能系统中的应用。Huang等 [34] 报道了一种掺入3D多孔石墨烯–碳纳米管支架上的磷化铁纳米晶体(FeP/rGO/CNTs),用于稳定和高倍率的锂硫电池。如图5(a),DFT理论计算表明FeP对LiPSs具有强力的化学吸附,从而抑制LiPSs穿梭效应。均匀分散的FeP纳米晶体作为催化剂,在锂硫电池氧化还原反应中引发快速的LiPSs转化。锚定在rGO-CNT框架上的FeP纳米晶体提供了大量的吸附界面,促进Li2S成核和生长,从而增强氧化还原反应动力学。由于FeP是一种非活性物质,在工作电压内过量的材料会降低整体的能量密度,而吸附和催化只发生在宿主表面,这意味着构建具有高活性表面的FeP架构是必要的。Ma等 [35] 通过在溶剂热程序中磷化自组装的海胆状FeOOH前体来构建空心海胆FeP (如图5(b)),为LiPSs提供更多的活性表面。通过动力学研究进一步证实FeP催化LiPSs转化的能力,尤其是从S8向Li2S4还原的这一过程,无论是作为硫宿主(如图5(c-i))还是功能隔膜(如图5(c-ii)),FeP的加入都实现了良好的循环稳定性和倍率性能。Xia等 [36] 合成了一种由嵌入梯度多孔碳微球中的FeP纳米颗粒组成的Li-S电池阴极主体PCM/FeP,FeP纳米颗粒在梯度多孔导电碳骨架内的均匀分布使活性多硫化锂结合位点和催化位点的最大化暴露成为可能,从而保证了高催化效率,确保了高硫利用率。FeP对Li2S4的吸附构型如图5(d)所示。

此外,具有不同构成的磷化铁的异质结材料构成了双向催化剂体系,通过内置电场的调控对多硫化物的吸附进行调节并加速电荷转移。Zhao等 [37] 通过简单的硬模版法和磷化,制得FeP/Fe2P异质结构,综合了FeP的催化能力的和Fe2P的强吸附能力(如图5(e)),异质结构中Fe 3d和P 2p带的键合轨道和反键轨道之间d-p带中心减小(如图5(f)),在费米能级上提高的电子浓度增加了其与多硫化锂键合的可能。反应活化能的降低有效加速了锂离子转移速率,在大电流以及高载量下均具有良好的稳定性。但亚铁磷化物在锂硫电池,尤其是正极中的应用较少,磷化铁的低活性缺陷仍有待解决。

Figure 5. (a) i): Theoretical calculations of binding energies of several sulfur species with the (111) plane of FeP; ii) Geometry of Li2S6 binding to the (111) plane of FeP [34] . (b) Preparation diagram of urchin FeP/S [35] . (c) Cycling performances at 1 C of i): FeP/S with various areal S loadings and ii) S//FeP//Li and S//FeOOH//Li [35] . (d) Electronic differential density of a theoretical model of Li2S4-FeP [33] . (e) The relationship between the adsorption ability and catalytic activity of FeP, Fe2P and heterostructure and (f) schematic diagrams of the band structure of FeP/Fe2P n-n heterostructure before and after contact [37]

图5. (a) i):FeP的(111)面对多各硫物种结合能的理论计算;ii):FeP的(111)面结合Li2S6的几何结构 [34] 。(b) 海胆状FeP/S的制备过程 [35] 。(c) i):不同硫面载量的FeP/和 ii) S//FeP//Li和S//FeOOH//Li电池在1 C电流密度下的循环数据 [35] 。(d) Li2S4-FeP的电子差分密度模型 [33] 。(e) FeP,Fe2P以及异质结构的吸附能力和催化活性之间的关系以及(f) 接触前后FeP/Fe2P之间n-n异质结构的能带结构示意图 [37]

2.4. 硫化铁

Figure 6. (a) Explanation of the advantages of nanoparticles over bulk FeS2 in sodium-sulfur batteries [38] . (b) Discharge capacity curves and corresponding Coulombic efficiency of BP2000-S and BP2000-FeS-S composite electrodes in 500 cycles at 0.5 C [45] . (c) Visual confirmation of LiPSs entrapment at the specific discharge of FeS/N-C and N-C cells, both of them discharged at 0.2 C between the open-circuit potential to 1.8 V under identical conditions Schematic illustration of FeS/N-C [49] . (d) Synthetic routes to yolk-shell FeS-C and FeS2-C nanospindles [50] . (e) Long-term cycling performance of the S/Fe2N@C NBs cathode at 1 C [52] . (f) Cycling performances of FeF2@rGO cathode and rGO cathode at 1 C, and under high sulfur loading at 0.1 C [53] . (g) Schematic illustration of synergistic mechanism of Fe3C-Fe3P heterostructure [54]

图6. (a)在钠硫电池中纳米颗粒比块状FeS2更具优势的说明 [38] 。(b) BP2000-S和BP2000-FeS-S复合电极在0.5 C电流密度下循环500圈的放电比容量曲线以及对应的库伦效率 [45] 。(c) 在相同条件下,在开路电位至1.8 V之间以0.2 C放电的FeS/N-C和N-C电池的特定放电中,LiPSs被捕获的可视观测 [49] 。(d) 卵黄壳FeS-C和FeS2-C的合成路线 [50] 。(e) S/Fe2N@C NBs正极在1 C下的长循环曲线 [52] 。(f) FeF2@rGO和rGO正极在1 C瞎的循环,以及在高硫载量的0.1 C下的循环 [53] 。(g) Fe3C-Fe3P异质结构的协同作用机理 [54]

近年来,铁基硫化物因良好的导电性、催化性和低成本,在催化剂和储能器件等领域得到了较多的关注和研究。由于黄铁矿(FeS2)在自然界含量丰富且低毒性,Douglas等 [38] 通过湿法化学合成了一种超细纳米FeS2纳米颗粒并验证了其良好的储钠/锂的能力。如图6(a),通过测试对比不同体积大小的FeS2发现超细颗粒在一定程度上克服了热力学和动力学限制,为高容量存储和纳米尺寸催化剂 [39] 的合成开辟了新的途径。Zhang等 [40] 通过EDS和Raman等测试,结合热力学相图提出多硫化锂(Li2Sn)与FeS2之间在充放电反应中发生络合,反应生成Li2FeS2+n中间产物达到了吸附LiPSs的结果,这一中间反应减少了活性物质硫的损失。2D结构、立方结构、核壳结构等 [15] [41] [42] [43] [44] 不同构型从理论或实验均被证明具有较好的吸附能力和优良的导电性。

差的稳定性导致FeS在锂硫电池中应用较少。Yang等 [45] 构建了一种填充在BP2000孔洞中的FeS纳米颗粒(BP2000-FeS),电子能够从导电FeS这一多硫化物的高效吸附剂表面向Li转移,在阻止LiPSs转移的同时提供高的放电容量(如图6(b))。块状 [46] 和片状 [47] 的FeS均被证明对多硫化物具有优良的锚定能力,但颗粒间的强物理吸附导致了材料团聚,不利于长期的循环稳定性。通过简易且成本较低的溶剂热加上高温退火制备得到了碳包覆的纳米花状FeS (FeS/C)材料 [48] [49] ,FeS/C独特的花状结构产生了更大的表面来有效的限制多硫化物扩散(如图6(c)),降低了电池容量的衰减,表现出了更稳定的电化学性能,同时外包的碳层避免了FeS在充放电过程中的团聚。这种高效绿色的合成方法使得FeS/C有望工业化、规模化生产。不同原子比的硫化铁材料通过简单的温度控制等就可以达成 [50] (如图6(d))。

总的来讲,由于电池性能一般以及前期电池性能衰减快等问题,目前对硫化铁的研究依然较少。循环过程中不可抗拒的体积变化和困难的合成方法阻碍了硫化铁的实际应用。当然,在锂硫电池领域,越来越多的人致力于探索和开发具有不同形貌和杂化基质的硫化铁材料 [51] ,以克服这些障碍。

2.5. 其他铁基化合物

除了以上几种常见的化合物,还有像氮化铁、氟化铁等不常见化合物铁基化合物可用于锂硫电池正极材料。蛋黄核壳结构已经被证实是一种有效的提高锂硫电池性能的结构,Zheng等 [52] 成功合成了一种高性价比的多功能Fe2N@C蛋黄壳纳米盒(Fe2N@C NBs),极性的Fe2N核对多硫化物的强吸附和有效催化令电池表现出了高可逆容量、出色的倍率性能以及1 C下极佳的循环稳定性(如图6(e))。Sun等 [53] 制备了一种氟化铁/石墨烯(FeF2/rGO)材料作为正极的硫基体,在充放电反应过程中通过XRD等检测出现了FeF2原位转化为FeS和LiF的现象,LiF低的扩散势垒实现了高效的离子扩散,同时FeS对多硫化锂的强吸附作用协同保障了电池的高效稳定循环。低电化学极化和优异的氧化还原反应动力学保障了在12.7 mg·cm−2的高硫负载和6 uL·mg1的贫电解质条件下仍实现了12.3 mAh·cm2的高性能(如图6(f))。氧化铁、硫化铁的强化学吸附,碳化铁、磷化铁的导电性和强催化能力等优势突出,但同时存在的缺陷如氧化铁的弱导电性等也影响了电池性能的进一步提高。异质结构的设计结合了两种材料的优势并有效降低它们的缺陷在电池中的影响(如图6(g)),合理的材料搭配为打造更加优良的催化剂提供了合理的策略 [54] [55] [56] [57] 。

3. 结语

锂硫电池作为替代当下传统储能系统最具实力的竞争者,高的理论容量吸引了广泛的关注。但存在的多硫化物的穿梭效应、体积膨胀、低导电性等缺陷阻碍了它的稳定高效运行,解决这些问题是推进锂硫电池工业化的必然要求。铁作为一种最为常见的金属,不同的铁基化合物所具有的对LiPSs独特的化学吸附、快速催化转化、提高电导率等效果,使得它们作为硫的化学锚和催化活性位点在锂硫电池中具有突出的表现。单一种类铁基材料对锂硫电池性能的改善方式还较为单一,这就需要研究者们开发合适的异质结组合来有机结合二者之间的优势。如何设计合适的材料搭配和结构构成,仍然值得我们去发现和研究。如何有效捕获多硫化物和提高正极导电性仍是目前的研究重点。合适的吸附能力才能够在抑制穿梭效应的前提下保障活性物质的快速转化;合适的碳基底可以帮助提供大量的储硫空间,设计合适的能够大量制备的金属化合物/碳材料结构是工业化生产的重要前提;此外,能否用于高载量电池、固态电池等也是需要考虑的。锂硫电池工业化的道路还需要研究者的大量投入,正极材料、隔膜、电解质以及锂负极等各部分的研究都是必不可少的,铁基材料在其中拥有着它的一席之地。

项目基金

广西自然科学基金(2022GXNSFAA035463)。

NOTES

*通讯作者。

参考文献

[1] Khan, T., Yu, M. and Waseem, M. (2022) Review on Recent Optimization Strategies for Hybrid Renewable Energy System with Hydrogen Technologies: State of the Art, Trends and Future Directions. International Journal of Hydrogen Energy, 47, 25155-25201.
https://doi.org/10.1016/j.ijhydene.2022.05.263
[2] Lamba, P., Singh, P., Singh, P., et al. (2022) Recent Advancements in Supercapacitors Based on Different Electrode Materials: Classifications, Synthesis Methods and Comparative Performance. Journal of Energy Storage, 48, Article ID: 103871.
https://doi.org/10.1016/j.est.2021.103871
[3] Yu, T.W., Li, G.H., Duan, Y., et al. (2023) The Research and In-dustrialization Progress and Prospects of Sodium Ion Battery. Journal of Alloys and Compounds, 958, Article ID: 170486.
https://doi.org/10.1016/j.jallcom.2023.170486
[4] Kang, J.H., Lee, J., Jung, J.W., et al. (2020) Lithi-um-Air Batteries: Air-Breathing Challenges and Perspective. ACS Nano, 14, 14549-14578.
https://doi.org/10.1021/acsnano.0c07907
[5] Shao, Q., Zhu, S. and Chen, J. (2023) A Review on Lithium-Sulfur Batteries: Challenge, Development, and Perspective. Nano Research, 16, 8097-8138.
https://doi.org/10.1007/s12274-022-5227-0
[6] Wang, J.N., Wang, H. L., Jia, S.Y., et al. (2023) Recent Advances in Inhibiting Shuttle Effect of Polysulfide in Lithium-Sulfur Batteries. Journal of Energy Storage, 72, Article ID: 108372.
https://doi.org/10.1016/j.est.2023.108372
[7] Huang, Y.Z., Lin, L., Zhang, C.K., et al. (2022) Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High-Performance Li-S Batteries. Advanced Science, 9, Article ID: 2106004.
https://doi.org/10.1002/advs.202106004
[8] Deng, R.Y., Wang, M., Yu, H.Y., et al. (2022) Recent Advances and Applications toward Emerging Lithium-Sulfur Batteries: Working Principles and Opportunities. Energy & Environmental Materials, 5, 777-799.
https://doi.org/10.1002/eem2.12257
[9] Zhou, L., Danilov, D.L., Eichel, R.A., et al. (2021) Host Materials An-choring Polysulfides in Li-S Batteries Reviewed. Advanced Energy Materials, 11, Article ID: 2001304.
https://doi.org/10.1002/aenm.202001304
[10] Li, S., Zhang, W., Zheng, J., et al. (2021) Inhibition of Polysulfide Shuttles in Li-S Batteries: Modified Separators and Solid-State Electrolytes. Advanced Energy Materials, 11, Article ID: 2000779.
https://doi.org/10.1002/aenm.202000779
[11] Li, J., Gao, L., Pan, F., et al. (2024) Engineering Strategies for Sup-pressing the Shuttle Effect in Lithium-Sulfur Batteries. Nano-Micro Letters, 16, Article No. 12.
https://doi.org/10.1007/s40820-023-01223-1
[12] Chen, L., Zhan, C.Y., Lu, Y., et al. (2023) Facile Synthesizing Yolk-Shelled Fe3O4@Carbon Nanocavities with Balanced Physiochemical Synergism as Efficient Hosts for High-Performance Lithium-Sulfur Batteries. Batteries, 9, Article 295.
https://doi.org/10.3390/batteries9060295
[13] Xiong, Z.S., Li, J.H., Sun, Y.J., et al. (2022) Fe3C@NCNT as a Promoter for the Sulfur Cathode toward High-Performance Lithium-Sulfur Batteries. Journal of Alloys and Compounds, 899, Article ID: 163245.
https://doi.org/10.1016/j.jallcom.2021.163245
[14] Jamil, S., Wang, H., Fasehullah, M., et al. (2023) N Doped FeP Nanospheres Decorated Carbon Matrix as an Efficient Electrocatalyst for Durable Lithium-Sulfur Batteries. Journal of Colloid and Interface Science, 630, 70-80.
https://doi.org/10.1016/j.jcis.2022.09.126
[15] Zhao, F.N., Xue, H.T., Yao, X.J., et al. (2024) Theoretically Unrav-eling the Performance of 2D-FeS2 as Cathode Material for Li-S Batteries. Materials Today Communications, 38, Article ID: 107704.
https://doi.org/10.1016/j.mtcomm.2023.107704
[16] Zhao, C.C., Shen, C., Xin, F.X., et al. (2014) Prussian Blue-Derived Fe2O3/Sulfur Composite Cathode for Lithium-Sulfur Batteries. Materials Letters, 137, 52-55.
https://doi.org/10.1016/j.matlet.2014.08.115
[17] Dong, W., Meng, L., Zhao, M., et al. (2021) Fe2O3/RGO/CNT Composite Sulfur Hosts with Physical and Chemical Dual-Encapsulation for High Performance Lithium-Sulfur Batteries. New Journal of Chemistry, 45, 21582-21590.
https://doi.org/10.1039/D1NJ03769B
[18] Zheng, C., Niu, S.Z., Lv, W., et al. (2017) Propelling Polysulfides Transformation for High-Rate and Long-Life Lithium Sulfur Batteries. Nano Energy, 33, 306-312.
https://doi.org/10.1016/j.nanoen.2017.01.040
[19] Pu, J., Huang, Z., Wang, J., et al. (2023) Core-Shell Oxy-gen-Deficient Fe2O3 Polyhedron Serves as an Efficient Host for Sulfur Cathode. Chemical Communications, 60, 180-183.
https://doi.org/10.1039/D3CC05476D
[20] He, J.R., Luo, L., Chen, Y.F., et al. (2017) Yolk-Shelled C@Fe3O4 Nanoboxes as Efficient Sulfur Hosts for High-Performance Lithium-Sulfur Batteries. Advanced Materials, 29, Article ID: 1702707.
https://doi.org/10.1002/adma.201702707
[21] Ding, M., Huang, S., Wang, Y., et al. (2019) Promoting Polysulfide Conversion by Catalytic Ternary Fe3O4/Carbon/Graphene Composites with Ordered Microchannels for Ultrahigh-Rate Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 7, 25078-25087.
https://doi.org/10.1039/C9TA06489C
[22] Li, M.H., Ji, S., Ma, X.G., et al. (2022) Synergistic Effect between Monodisperse Fe3O4 Nanoparticles and Nitrogen-Doped Carbon Nanosheets to Promote Polysulfide Conversion in Lithium-Sulfur Batteries. ACS Applied Materials & Interfaces, 14, 16310-16319.
https://doi.org/10.1021/acsami.2c02558
[23] Chao, W., Guozhe, S., Dongxuan, G., et al. (2022) Oxygen Vacan-cy-Engineered Fe2O3 Porous Microspheres with Large Specific Surface Area for Hydrogen Evolution Reaction and Lithium-Sulfur Battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 649, Article ID: 129476.
https://doi.org/10.1016/j.colsurfa.2022.129476
[24] Li, J., Xu, Y.L., He, C., et al. (2022) Three-Dimensional Em-broidered Ball-Like α-Fe2O3 Synthesised by a Microwave Hydrothermal Method as a Sulfur Immobilizer for High-Performance Li-S Batteries. Journal of Materials Chemistry C, 10, 7066-7075.
https://doi.org/10.1039/D1TC05694H
[25] Gao, Z., Schwab, Y., Zhang, Y.Y., et al. (2018) Ferromagnetic Nano-particle-Assisted Polysulfide Trapping for Enhanced Lithium-Sulfur Batteries. Advanced Functional Materials, 28, Arti-cle ID: 1800563.
https://doi.org/10.1002/adfm.201800563
[26] Zhang, H.Y., Cui, H.T., Li, J., et al. (2019) Frogspawn Inspired Hollow Fe3C@N-C as an Efficient Sulfur Host for High-Rate Lithium-Sulfur Batteries. Nanoscale, 11, 21532-21541.
https://doi.org/10.1039/C9NR07388D
[27] Gao, S.Y., Xia, F., Li, B.M., et al. (2021) Synergistics of Fe3C and Fe on Mesoporous Fe-N-C Sulfur Host for Nearly Complete and Fast Lithium Polysulfide Conversion. ACS Applied Mate-rials & Interfaces, 13, 17791-17799.
https://doi.org/10.1021/acsami.1c01393
[28] Wu, S., Ke, Y., Tang, J., et al. (2022) Upcycling of Electroplating Sludge into Fe3C-Decorated N, P Dual-Doped Porous Carbon via Microalgae as Efficient Sulfur Host for Lithium-Sulfur Batteries. Surfaces and Interfaces, 30, Article ID: 101869.
https://doi.org/10.1016/j.surfin.2022.101869
[29] Dong, Q., Zhang, F., Ji, S., et al. (2021) Fe3C-Inserted “Tube Plugging Into Porous Network” Nanohybrids as Advanced Sul-fur Hosts for Lithium-Sulfur Batteries. Journal of Alloys and Compounds, 877, Article ID: 160286.
https://doi.org/10.1016/j.jallcom.2021.160286
[30] Lei, W., Wang, X., Zhang, Y., et al. (2021) Facile Synthesis of Fe3C Nano-Particles/Porous Biochar Cathode Materials for Lithium Sulfur Battery. Journal of Alloys and Compounds, 853, Article ID: 157024.
https://doi.org/10.1016/j.jallcom.2020.157024
[31] Chen, R., Zhou, Y. and Li, X. (2022) Cotton-Derived Fe/Fe3C-Encapsulated Carbon Nanotubes for High-Performance Lithium-Sulfur Batteries. Nano Letters, 22, 1217-1224.
https://doi.org/10.1021/acs.nanolett.1c04380
[32] Yang, D.S., Bhattacharjya, D., Inamdar, S., et al. (2012) Phos-phorus-Doped Ordered Mesoporous Carbons with Different Lengths as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. Journal of the American Chemical Society, 134, 16127-16130.
https://doi.org/10.1021/ja306376s
[33] Shen, J., Xu, X., Liu, J., et al. (2019) Mechanistic Understanding of Metal Phosphide Host for Sulfur Cathode in High-Energy-Density Lithium-Sulfur Batteries. ACS Nano, 13, 8986-8996.
https://doi.org/10.1021/acsnano.9b02903
[34] Huang, S., Lim, Y.V., Zhang, X., et al. (2018) Regulating the Poly-sulfide Redox Conversion by Iron Phosphide Nanocrystals for High-Rate and Ultrastable Lithium-Sulfur Battery. Nano Energy, 51, 340-348.
https://doi.org/10.1016/j.nanoen.2018.06.052
[35] Ma, M., Cao, L.Y., Yao, K., et al. (2021) Tailoring FeP with a Hollow Urchin Architecture for High-Performance Li-S Batteries. ACS Sustainable Chemistry & Engineering, 9, 5315-5321.
https://doi.org/10.1021/acssuschemeng.0c09030
[36] Xia, G., Zhang, L., Ye, J., et al. (2022) Amor-phous Transformation of FeP Enabling Enhanced Sulfur Catalysis and Anchoring in High-Performance Li-S Batteries. Chemical Engineering Journal, 431, Article ID: 133705.
https://doi.org/10.1016/j.cej.2021.133705
[37] Zhao, Z.X., Yi, Z.L., Duan, Y.R., et al. (2023) Regulating the D-P Band Center of FeP/Fe2P Heterostructure Host with Built-In Electric Field Enabled Efficient Bidirectional Electrocatalyst toward Advanced Lithium-Sulfur Batteries. Chemical Engineering Journal, 463, Article ID: 142397.
https://doi.org/10.1016/j.cej.2023.142397
[38] Douglas, A., Carter, R., Oakes, L., et al. (2015) Ultrafine Iron Pyrite (FeS2) Nanocrystals Improve Sodium-Sulfur and Lithium-Sulfur Conversion Reactions for Efficient Batteries. ACS Nano, 9, 11156-11165.
https://doi.org/10.1021/acsnano.5b04700
[39] Sun, W., Liu, S., Li, Y., et al. (2022) Monodispersed FeS2 Electro-catalyst Anchored to Nitrogen-Doped Carbon Host for Lithium-Sulfur Batteries. Advanced Functional Materials, 32, Ar-ticle ID: 2205471.
https://doi.org/10.1002/adfm.202205471
[40] Zhang, S.S. and Tran, D.T. (2016) Pyrite FeS2 as an Efficient Ad-sorbent of Lithium Polysulphide for Improved Lithium-Sulphur Batteries. Journal of Materials Chemistry A, 4, 4371-4374.
https://doi.org/10.1039/C6TA01214K
[41] Xie, F.W., Xu, C.J., Liang, Y.Z., et al. (2023) Cubic FeS2 Enabling Robust Polysulfide Adsorption and Catalysis in Lithium/Sulfur Batteries. Journal of Energy Storage, 72, Arti-cle ID: 108712.
https://doi.org/10.1016/j.est.2023.108712
[42] Zhao, X.S., Zhang, D.A., Sun, C.X., et al. (2022) Synthesis of Hollow S/FeS2@Carbon Nanotubes Microspheres and Their Long-Term Cycling Performances as Cathode Material for Lithium-Sulfur Batteries. Journal of Electroanalytical Chemistry, 922, Article ID: 108712.
https://doi.org/10.1016/j.jelechem.2022.116724
[43] Zeng, Z., Li, W., Chen, X., et al. (2020) Nanosized FeS2 Par-ticles Caged in the Hollow Carbon Shell as a Robust Polysulfide Adsorbent and Redox Mediator. ACS Sustainable Chemistry & Engineering, 8, 3261-3272.
https://doi.org/10.1021/acssuschemeng.9b06874
[44] Jin, X., Gao, S., Wu, A., et al. (2020) Dual-Constrained Sulfur in FeS2@C Nanostructured Lithium-Sulfide Batteries. ACS Applied Energy Materials, 3, 10950-10960.
https://doi.org/10.1021/acsaem.0c01929
[45] Yang, W.W., Zhao, H., Chen, L., et al. (2017) Ferrous Sul-fide-Assisted Hollow Carbon Spheres as Sulfur Host for Advanced Lithium-Sulfur Batteries. Chemical Engineering Journal, 326, 1040-1047.
https://doi.org/10.1016/j.cej.2017.06.050
[46] Xi, K., He, D.Q., Harris, C., et al. (2019) Enhanced Sulfur Trans-formation By Multifunctional FeS2/FeS/S Composites for High-Volumetric Capacity Cathodes in Lithium-Sulfur Batter-ies. Advanced Science, 6, Article ID: 1800815.
https://doi.org/10.1002/advs.201800815
[47] Chen, F.C., Gao, C.H., Li, H., et al. (2021) FeS Monolayer as a Po-tential Anchoring Material for Lithium-Sulfur Batteries: A Theoretical Study. Surface Science, 707, Article ID: 121818.
https://doi.org/10.1016/j.susc.2021.121818
[48] Li, R., Shen, H., Pervaiz, E., et al. (2021) Facile in Situ Nitro-gen-Doped Carbon Coated Iron Sulfide as Green and Efficient Adsorbent for Stable Lithium-Sulfur Batteries. Chemical Engineering Journal, 404, Article ID: 126462.
https://doi.org/10.1016/j.cej.2020.126462
[49] Yuan, Q., Chen, Y., Li, A., et al. (2020) Polysulfides Anchoring and Enhanced Electrochemical Kinetics of 3D Flower-Like FeS/Carbon Assembly Materials for Lithium-Sulfur Battery. Applied Surface Science, 508, Article ID: 145286.
https://doi.org/10.1016/j.apsusc.2020.145286
[50] Xie, D., Mei, S., Xu, Y., et al. (2021) Efficient Sulfur Host Based on Yolk-Shell Iron Oxide/Sulfide-Carbon Nanospindles for Lithi-um-Sulfur Batteries. ChemSusChem, 14, 1404-1413.
https://doi.org/10.1002/cssc.202002731
[51] Wei, C.D., Xue, H.T., Hu, Y.X., et al. (2024) Tuning of D-P Band Centers with M-A (M=Co, Ni, Cu; A=N, P, O, Se) Co-Doped FeS2 for Enhanced Li-S Redox Chemistry. Journal of Energy Storage, 77, Article ID: 109881.
https://doi.org/10.1016/j.est.2023.109881
[52] Sun, W., Liu, C., Li, Y., et al. (2019) Rational Construction of Fe2N@C Yolk-Shell Nanoboxes as Multifunctional Hosts for Ultralong Lithium-Sulfur Batteries. ACS Nano, 13, 12137-12147.
https://doi.org/10.1021/acsnano.9b06629
[53] Sun, X., Tian, D., Song, X., et al. (2022) In Situ Conversion to Construct Fast Ion Transport and High Catalytic Cathode for High-Sulfur Loading with Lean Electrolyte Lithium-Sulfur Battery. Nano Energy, 95, Article ID: 106979.
https://doi.org/10.1016/j.nanoen.2022.106979
[54] Shi, K.X., Song, Y.J., Xiong, Z.S., et al. (2023) Achieving Balanced Behavior between Polysulfides Adsorption and Catalytic Conversion from Heterostructure Fe3C-Fe3P Promo-tor for High-Performance Lithium-Sulfur Batteries. Chemical Engineering Journal, 460, Article ID: 141794.
https://doi.org/10.1016/j.cej.2023.141794
[55] Bai, L., Liu, Q., Chang, F., et al. (2023) Fe3O4/FeP Hetero-Hybrids Confer Polypropylene Separator Robust Inhibitory Effect to the Shuttle of Soluble Lithium Polysulfides. Materialia, 32, Article ID: 101972.
https://doi.org/10.1016/j.mtla.2023.101972
[56] Li, X., Shao, C., Wang, X., et al. (2022) Preparation of Fe3O4/FexSy Heterostructures via Electrochemical Deposition Method and Their Enhanced Electrochemical Performance for Lithium-Sulfur Batteries. Chemical Engineering Journal, 446, Article ID: 137267.
https://doi.org/10.1016/j.cej.2022.137267
[57] Junhao, L., Zhengyi, W., Kaixiang, S., et al. (2023) Nanoreactors Encapsulating Built-In Electric Field as A “Bridge” for Li-S Batteries: Directional Migration and Rapid Conversion of Polysulfides. Advanced Energy Materials.