3D FAVO技术在二连探区W区块的应用
The Application of 3D FAVO Technology in W Block of Erlian Exploration Area
DOI: 10.12677/AG.2023.139099, PDF, HTML, XML, 下载: 219  浏览: 1,290 
作者: 刘雷颂, 张 浩, 郭增虎, 吴占奎, 胡沙沙:中国石油东方地球物理公司研究院地质研究中心,河北 涿州;邢雅文:中国石油集团华北油田分公司勘探部,河北 任丘
关键词: FAVO分方位分频裂缝FAVO Azimuth Frequency Fracthures
摘要: FAVO (即不同频率域AVO效应,应用方法为不同频率域进行AVO反演。)理论上可以实现,目前大部分实验都是基于单点及二维线,本次在二连探区W区块进行了三维数据域FAVO的实验。首先针对OVT数据的360˚方位进行炮检距分析,选取炮检距覆盖区域进行同相轴一致性处理。其次,分方位、分角度进行部分资料叠加,通过对各个部分叠加资料进行区内井合成记录标定,提取井旁道的地震子波,进行各向异性反演。再次,根据各向异性反演结果与该区目的层段断裂系统进行叠合对比,确定了该区裂缝的主要发育方向。最后,对裂缝的主要发育方向道集进行频带分析,并在有效频带进行不同频带及全频带AVO反演。各个频率带AVO反演结果与实际钻井进行对比分析,发现方位120~150˚低频段AVO反演结果与钻井实际情况吻合最好。
Abstract: FAVO (That is, AVO effect in different frequency domains, the application method is AVO inversion in different frequency domains.) can be realized theoretically. At present, most experiments are based on single point and two-dimensional line. The experiment of FAVO in 3D seismic data was carried out in W block of Erlian exploration area. Firstly, the 360˚ offset information of OVT data is analyzed, and the phase axis consistency processing is carried out in the information density uniform area. Secondly, the partial data of azimuth and angle are stacked, and the anisotropic inversion is carried out by calibrating the synthetic record of each part of the data and extracting the seismic wavelet of the well side channel. Thirdly, according to the superposition comparison between the anisotropic inversion results and the fault system of this layer in this area, the main development direction of fractures is determined. Finally, the frequency band analysis is carried out in the main development direction of the fracture, and the frequency division and full frequency band AVO inversion are carried out in the effective frequency band. By comparing the AVO inversion results of the drilled wells with those of each AVO inversion, the AVO inversion results of the low frequency band in the azimuth of 120~150˚ are in good agreement with the drilling situation.
文章引用:刘雷颂, 张浩, 邢雅文, 郭增虎, 吴占奎, 胡沙沙. 3D FAVO技术在二连探区W区块的应用[J]. 地球科学前沿, 2023, 13(9): 1032-1039. https://doi.org/10.12677/AG.2023.139099

1. 前言

二连盆地 [1] [2] [3] [4] 经过几十年的勘探历程,现已进入瓶颈期,勘探逐渐由近岸向湖盆中心延伸,储层预测及勘探部分区块由常规油藏转入非常规油藏,采集处理也由常规三维向“两宽一高” [5] [6] 三维推进,储层预测及流体检测也相应地由三维数据的应用转向多维数据(x、y、z、方位、反射角等)应用。W区块为二连盆地的一块实验区块,该目的层为一套致密砂砾岩地层。

2. 数据分析

W区块的实验数据为“两宽一高”采集的OVT [7] [8] [9] 数据,首先是分析OVT数据的各个方位的炮检距信息(图1)分析。各个方向的炮检距不一样,根据木桶原理进行分方位、分角度进行部分叠加。图1所示偏移距在2500以内各个方位均匀有数据,因此利用偏移距2500以内数据进行实验。

Figure 1. OVT gather analysis

图1. OVT道集分析

其次扫描OVT道集数据,根据目的层的同相轴归位情况判断是否需要进行道集处理,同相轴归位不合理会影响AVO精度,通过道集扫描发现实验数据需要进行同相轴归位处理。图2 (左侧为处理前道集、右侧为处理后道集)为同相轴归位处理前后对比,图2中所示处理后同相轴连续性好、较好的基本上都比较平直,达到了预测AVO属性的要求。

Figure 2. Comparison of OVT gathers before and after phase axis homing processing

图2. OVT道集同相轴归位处理前后对比

第三AVO模型分析是进行AVO反演的基础,测井AVO模型与道集AVO类型一致才能进行AVO反演。图3为AVO模型分析(3a为测井AVO模型,3b为测井曲线,3c为过井道集,3d测井模型AVO类型,3e为地震道集AVO类型),图中红色圈内为目的层,从图3 AVO类型分析可视,两者基本一致,都是随炮检距增大而振幅增强。

Figure 3. AVO type analysis

图3. AVO类型分析

第四根据角道集目的层的有效角度范围8~30˚ (图4),确立分三个角度范围8~16˚、15~23˚、22~30˚进行部分叠加,同时从方位角0˚到180˚分为6个角度范围0~30˚、30~60˚、60~90˚、90~120˚、120~150˚、150~180˚进行叠加,根据方位角及反射角的划分组合共叠加18个部分叠加数据。即每个方位分3个角度,共6个方位。

Figure 4. Angle gathers

图4. 角道集

3. 各向异性反演

各项异性反演的目的是确立研究区目的层裂缝发育方向,裂缝发育方向即流体联通方向,根据声波在介质中的传播原理:流体联通方向AVO效应明显。根据公式:

log ( v p v s ) = b 0 + b 1 cos [ 2 ( ω φ ) ] + b 2 cos [ 4 ( ω ϕ ) ] (1)

式中: b 0 :isotropic各向同性; b 1 :各向异性; b 2 :各向异性高阶; ω :方位; ϕ :裂缝主方位。

判断裂缝预测的合理性的一条重要表象即裂缝方向与断层方向是否一致或小角度斜交,如果是正交或无规律则认为裂缝合理性欠缺。图5为目的层玫瑰图、裂缝走向图及断裂平面展布叠合图,玫瑰图展示裂缝角度范围,裂缝走向图展示裂缝主要走向,两者在红色圈内与断裂展布方向高度一致。说明裂缝预测合理,即断裂在宏观与微观方向一致,方位主要在120~150˚之间。

Figure 5. Fracture prediction and fracture combination superposition diagram

图5. 裂缝预测与断裂组合叠合图

4. 3D FAVO实验

3D FAVO [10] - [15] 理论上可以实现,目前大部分实验都是基于单点及二维线,文献中未查到应用的实例。

Wilson等(2009)在Smith和Gidlow (1987)反射系数公式:

R p p ( θ ) = 5 8 1 2 v s 2 v p 2 sin 2 ( θ ) + 1 2 tan 2 ( θ ) Δ v p v p + 4 v s 2 v p 2 sin 2 ( θ ) Δ v s v s (2)

的基础上得到了频变反射系数公式:

R p p ( θ , f i ) A ( θ ) Δ v p v p + A ( θ ) ( f i f d o m ) d d f ( Δ v p v p ) + B ( θ ) Δ v s v s + B ( θ ) ( f i f d o m ) d d f ( Δ v s v s ) (3)

图5中预测裂缝方位在120~150˚之间,根据流体AVO性质,在OVT数据上提取方位120~150˚的角道集,进而根据该方位角道集有效频率(图6),图6所示有效频率在5~45 Hz之间,根据有效频宽提取不同频率(5~18 Hz、18~31 Hz、31~45 Hz)段角道集(图7(a)为方位120~150˚全频带角道集,图7(b)为方位120~150˚,5~18 Hz角道集,图7(c)为方位120~150˚,18~31 Hz角道集,图7(d)为方位120~150˚,31~45 Hz角道集)。针对原始OVT、方位120~150˚全频及各个频段道集根据Aki-Richards近似方程分别进行AVO反演。

图8为OVT道集全方位AVO反演结果,A、B两口井出油层段中,A井吻合较好,B井稍差。图9(a)为方位120~150˚全频带角道集AVO反演结果,图9(b)为方位120~150˚,5~18 Hz角道集AVO反演结果,图9(c)为方位120~150˚,18~31 Hz角道集AVO反演结果,图9(d)为方位120~150˚,31~45 Hz角道集AVO反演结果。图9(a) AVO反演结果剖面中,A、B井出油层段均吻合较好,但A井底部及A井上部出现了AVO多解;图9(b) AVO反演结果剖面中,A、B井全井段吻合都好;图9(c) AVO反演结果剖面中,B井吻合较好,A井吻合较差;图9(d) AVO反演剖面中,B井吻合较差,A井不吻合。

Figure 6. Spectrum of angle gathers with azimuth of 120˚~150˚

图6. 方位120~150˚的角道集频谱

Figure 7. Azimuth 120~150˚ different frequency band angle gathers

图7. 方位120~150˚不同频段角道集

Figure 8. AVO inversion of OVT gathers

图8. OVT道集AVO反演

Figure 9. Azimuth 120~150 ˚ gather full frequency and sub-band AVO inversion

图9. 方位120~150˚道集全频及分频段AVO反演

5. 结论与建议

通过在W区块的FAVO实验,总结了一套FAVO反演的简单易行的流程:OVT道集炮检距分析,根据木桶原理舍去某些方位较长炮检距信息;进行OVT道集同相轴归位校正;分析目的层有效反射角度范围,根据方位及反射角进行分方位、分角度部分道集叠加;针对研究区内每口井进行各个数据体合成记录标定,并提取井旁道地震子波;进行各向异性反演,分析裂缝发育方向;根据裂缝发育方向进行同方向AVO及FAVO反演,从实验结果来看,低频AVO反演结果与实际情况吻合最好。

建议:如果有时间可以针对每个方位进行FAVO反演,从而进一步验证本研究的结论是否合理,如果时间紧可以直接根据研究区断裂系统主要走向进行该方位的低频AVO反演。

参考文献

[1] 张以明, 刘震, 付升, 等. 二连盆地基底特征及演化新认识[J]. 石油地球物理勘探, 2019, 54(2): 404-416.
[2] 卫三元, 秦明宽, 李月湘, 等. 二连盆地晚中生代以来构造沉积演化与铀成矿作用[J]. 铀矿地质, 2006, 22(2): 76-82.
[3] 杨冰彬. 二连盆地裂谷构造演化[J]. 内蒙古石油化工, 2013, 39(14): 51-53.
[4] 于海飞. 二连盆地中新生代沉积构造演化与砂岩型铀成矿前景分析[J]. 河南理工大学学报(自然科学版), 2010, 29(S1): 6-10.
[5] 王华忠, 郭颂, 周阳. “两宽一高”地震数据下的宽带波阻抗建模技术[J]. 石油物探, 2019, 58(1): 1-8.
[6] 周佳和, 徐聪. “两宽一高”地震勘探技术在复杂油气勘探中的应用[J]. 世界地质, 2020, 39(2): 422-428.
[7] 乔会, 罗任植, 黄鹤飞, 王辉. OVT域处理技术在黄土塬区煤田三维地震勘探中的应用[J]. 陕西煤炭, 2022, 41(4): 72-76+94.
[8] 毛诗仙. OVT域的道集细分在栗子地区的应用[J]. 中国石油和化工标准与质量, 2021, 41(19): 155-156.
[9] 郑多明, 邹义, 关宝珠, 等. 基于OVT域五维道集碳酸盐岩叠前裂缝预测技术[J]. 物探化探计算技术, 2020, 42(1): 9-16.
[10] Zhao, Z., Kumar, D., Foster, D.J., Dralus, D. and Sen, M.K. (2018) A New Frequency-Dependent Reflectivity Model and Estimating Seismic AVO Attributes. In: SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists, Houston, 416-420.
https://doi.org/10.1190/segam2018-2997403.1
[11] Wang, K., Chen, X., Wang, D., et al. (2018) A New Insight into the Hydrocarbon Indicator of Tight Sandstone Reservoir. In: SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists, Houston, 401-405.
https://doi.org/10.1190/segam2018-2989731.1
[12] Zhao, X., Chen, S. and Li, X.-Y. (2018) Analysis of Fre-quency-Dependent AVO Responses in Inelastic Thin Interbedded Media. In: SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists, Houston, 391-395.
https://doi.org/10.1190/segam2018-2985013.1
[13] Lu, L., Yin, X., Zong, Z. and Li, K. (2018) Estimation of Fluid Mobility with Frequency-Dependent Bayesian Inversion. In: SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists, Houston, 421-425.
https://doi.org/10.1190/segam2018-2997605.1
[14] Huang, G., Chen, X., Luo, C., Li, J. and Li, X. (2018) Frequency Dispersion Quantification by Using FAVO Inversion Based on the Generalized Propagation Matrix. In: SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists, Houston, 406-410.
https://doi.org/10.1190/segam2018-2994031.1
[15] Tan, H., Gao, W., Duan, X. and Zhang, S. (2018) Spectral Compensation Technology Based on Low Frequency AVO Trend Constraint and Its Application in Hydrocarbon Detection. In: SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists, Houston, 426-430.
https://doi.org/10.1190/segam2018-2998424.1