膜性肾病的研究进展
Advances in the Research of Membranous Nephropathy
DOI: 10.12677/ACM.2024.142602, PDF, HTML, XML, 下载: 42  浏览: 88 
作者: 张惠紫, 苏 华*:华中科技大学同济医学院附属协和医院肾内科,湖北 武汉
关键词: 膜性肾病靶抗原病理特征治疗Membranous Nephropathy Target Antigen Pathological Features Treatment
摘要: 膜性肾病(membranous nephropathy, MN)是具有共同的组织病理学模式的一种异质性疾病,常表现为肾病综合征(nephrotic syndrome, NS),是成人NS最常见的原因。MN的病因多样,其发病机制尚未完全阐明,但多认为与足细胞损伤有关,靶抗原的发现为其发病机制、诊断和治疗提供了新的方向。本文总结了MN的病因、分类、靶抗原,讨论其发病机制、病理特征等,以期为MN的早期诊断及治疗提供新的见解。
Abstract: Membranous nephropathy (MN) manifests as a heterogeneous disease sharing a common histo-pathological pattern, frequently presenting as Nephrotic syndrome (NS), and stands as the pre-dominant cause of NS among adults. The etiology of MN exhibits considerable diversity, and its pathogenesis remains incompletely elucidated, albeit the prevailing belief in its association with podocyte injury. Notably, the identification of target antigens has introduced novel dimensions to the understanding of MN’s pathogenesis, diagnosis, and therapeutic strategies. This article endeav-ors to comprehensively delineate the etiological spectrum, classification intricacies, and pertinent target antigens characterizing MN. Furthermore, it delves into the nuanced exploration of its path-ogenesis and pathological attributes, thereby aiming to furnish novel perspectives conducive to the advancement of early diagnostic modalities and therapeutic interventions for MN.
文章引用:张惠紫, 苏华. 膜性肾病的研究进展[J]. 临床医学进展, 2024, 14(2): 4352-4358. https://doi.org/10.12677/ACM.2024.142602

1. 引言

肾病综合征(nephrotic syndrome, NS)是一种可由多种病因引发的一组临床症候群,主要表现为大量蛋白尿(>3.5 g/24h)、低蛋白血症(血浆白蛋白 < 30 g/L)、水肿、高脂血症及其他代谢紊乱相关问题 [1] ,是肾小球疾病的常见表现之一。膜性肾病(membranous nephropathy, MN)是一个病理形态学诊断名词,其特征是肾小球基底膜(glomerular basement membrane, GBM)外侧、上皮下免疫球蛋白及补体(统称为免疫复合物,immune complex,IC)沉积,伴GBM弥漫性增厚 [2] [3] 。MN好发于中老年,男性多见,发病高峰年龄为50~60岁,是成人NS最常见的原因,也是肾移植后复发的主要肾小球疾病 [4] 。MN常起病隐匿,70%~80%的病人表现为NS,约30%伴有镜下血尿,一般无肉眼血尿,易发生血栓栓塞并发症 [5] 。MN的预后不一,约30%的患者可自发缓解,约30%的患者为持续性蛋白尿,约30%的患者可进展为严重肾功能衰竭并需行肾脏替代治疗 [6] [7] [8] ,故早期诊断MN及治疗尤为重要。

2. 膜性肾病的病因及分类

传统上根据病因将MN分为原发性MN (primary MN, PMN)与继发性MN (secondary MN, SMN) [9] 。PMN指在没有继发性疾病特征或病因的情况下对正常足细胞抗原有体液自身免疫反应的疾病亚型,约占MN病例的70%~80% [10] [11] 。SMN指MN病变可能与其他全身/系统疾病或暴露相关,一旦去除疾病就可能恢复,包括在最常见的自身免疫性疾病(如系统性红斑狼疮)、恶性肿瘤、感染(如病毒性肝炎)、移植物抗宿主病、过敏反应或药物、毒物暴露等全身过程中出现的病例 [10] 。但随着MN靶抗原的识别和新的疾病表型的发现,传统的MN分类受到巨大挑战,目前的证据表明可以参照参与发病机制的靶抗原/抗体系统以及相关疾病来定义和分类MN [12] 。

3. 膜性肾病的靶抗原

对抗原的自身免疫反应导致MN的认识始于1959年,海曼建立了Heymann肾炎大鼠模型并鉴定出Megalin抗原[2],丰富了对MN起源和进化的认识;Bord等人描述的种植抗原阳离子牛血清白蛋白(cationic bovine serum albumin, CBSA)可在兔模型中诱发MN [13] 。在过去的数十年中,发现了十多种MN相关性抗原,并在人类MN的候选抗原上取得了突破性进展。在患有MN的婴儿中,Debiec等人检测到由缺乏中性内肽酶(neutral endopeptidas, NEP)的母亲产生的抗NEP抗体 [14] ,这一发现实现了从动物实验到人类靶抗原发现的巨大跨越,并为后续鉴定成人MN相关的抗原奠定了基础。直到2009年,Beck等人的研究证实M型磷脂酶A2受体(phospholipase A2 receptor, PLA2R)特异性IgG4抗体存在于成人PMN患者血清中 [15] ,使得PLA2R成为第一个被证明的参与成人PMN的足细胞自身抗原,约占PMN抗原的70%;Tomas等人在2%~5%的PMN患者中发现了含有1型血小板反应蛋白7A域(thrombospondin type 1 domain-containing 7A, THSD7A)的抗体 [16] 。

激光显微切割肾小球和质谱分析的技术飞跃使得在剩余的10%~20%的MN病例中鉴定出了更多的抗原 [17] ,包括2019年发现的假定抗原外泌体糖基转移酶1和2 (exostosin 1/2, EXT1/2) [18] 、神经表皮生长因子样1型蛋白(neural epidermal growth factor-like 1, NELL1) [19] ,2020年发现的神经细胞粘附分子-1 (neural cell adhesion molecule 1, NCAM1) [20] 、信号素3B (semaphorin 3B, Sema3B) [21] ,2021年发现的原钙粘蛋白-7 (protocadherin 7, PCDH7) [22] 、丝氨酸蛋白酶HTRA1 (serine protease high temperature requirement A1, HTRA1) [23] 等。最近两年的研究陆续发现了一些最新的MN的靶抗原,包括神经调节蛋白-1 (netrin G1, NTNG1) [24] 、转化生长因子受体-3 (transforming growth factor beta receptor 3, TGFBR3) [25] 、接触蛋白1 (contactin 1, CNTN1) [26] 、非典型钙粘蛋白1 (atypical protocadherin FAT1, FAT1) [27] 、神经源性神经营养因子(neuron-derived neurotrophic factor, NDNF) [28] 以及前蛋白转化酶枯草杆菌蛋白酶/kexin6型(proprotein convertase subtilisin/kexin type 6, PCSK6)、分化簇206 (cluster of differentiation 206, CD206)、癫痫相关的6同系物样2 (seizure-related 6 homolog like 2, SEZ6L2)、利钠肽受体3 (natriuretic peptide receptor 3, NPR3)、纤维胶蛋白3 (ficolin 3, FCN3)、血管素(vasorin, VASN)、早期内体抗原1 (early endosome antigen 1, EEA1)和巨噬细胞刺激1 (macrophage stimulating 1, MST1) [29] 。靶抗原的发现使得MN的命名和分类方式发生迅速演变,靶抗原相关性MN的分类方法为MN的特异性诊断、监测随访和精准治疗方法提供了新的思路。随着靶抗原的发现,可以在患者的血清中监测到一些靶抗原相关抗体,例如抗PLA2R抗体、抗THSD7A抗体,它们可以作为MN的新型生物标志物辅助MN的诊断和分类,其变化水平可以反映MN的病程、病情、缓解率、预后及转归 [30] 。

4. 膜性肾病的发病机制

MN的发病机制较为复杂,目前仍不完全清楚,大多数学者认为免疫损伤是其发病的基本机制,自身抗体与自身免疫的靶抗原反应形成免疫复合体是其主要诱因。循环抗体与足细胞的内源性完整膜蛋白抗原或种植在GBM上的外源性抗原结合导致IC的原位形成,从上皮细胞膜脱落到GBM上皮细胞形成典型的IC沉积,进一步激活补体途径 [31] ,产生膜攻击性复合物(Membrane attack complex, MAC),病变过程中激活的细胞因子导致GBM细胞外基质成分改变,引起GBM增厚,使足细胞滤过屏障受损,进而引起蛋白尿,使病变进一步发展 [32] 。此外,抗足细胞抗体可以直接影响靶抗原的功能,足细胞通过提供内源性抗原来源或通过创造有利于包含外源性(非足细胞)抗原的IC沉积和累积的环境,处于MN发病机制的中心 [2] 。然而,MN中足细胞损伤的潜在机制尚不明确。有研究表明,在特发性MN中,足细胞的损伤可能是通过自噬缺陷和p38MAPK/mTOR/ULK1ser757通路的激活所致 [33] 。一些研究表明,MN中足细胞的损伤与微小核糖核酸(microRNA, miRNA)相关 [34] [35] ,刘等人的研究发现miR-130a-5p的减少通过增加PLA2R的表达来诱导足细胞凋亡 [36] ,从而导致MN的病理机制。张等人的研究证明,C3a/C3aR (complement 3a/complement 3a receptor)通路的激活可损害肾小球的滤过屏障,导致足细胞的表型变化和功能受损,在补体介导的MN的发病机制中发挥重要作用 [37] 。此外,有学者提出在MN中MAC形成后,可以促进细胞因子、蛋白激酶、磷脂酶等多种介质的释放,从而影响足细胞的DNA完整性、细胞骨架的结构和功能、氧化还原等代谢途径 [38] [39] 。因此,研究足细胞损伤的分子病理生理学机制可以为临床上延缓MN的进展提供有力的理论基础。

5. 膜性肾病的病理特征

5.1. 免疫荧光显微镜(Immunofluorescence Microscopy, IF)

IF在检测早期沉积物方面通常比光学或电子显微镜更敏感,显示免疫球蛋白和补体(以IgG和C3为主)沿毛细血管壁的外表面沉积,合并靶抗原染色,表现为典型的细颗粒状荧光 [40] 。

5.2. 光学显微镜(Light Microscope, LM)

在MN病程早期,LM显示肾小球基本正常,可仅有肾小球毛细血管襻僵硬,没有沉积的证据;病变典型时,GBM弥漫性增厚,可见钉突形成,上皮下、钉突间可见嗜复红蛋白沉积 [41] 。

5.3. 电子显微镜(Electron Microscope, EM)

EM下,GBM增厚,上皮细胞肿胀,足突融合,GBM与上皮细胞之间有大量电子致密沉积物(electron dense deposits, EDDs)形成 [40] 。根据EM表现,可对MN进行Ehrenreich-Churg病理分期 [40] 。I期:GBM无明显增厚,足突广泛融合,上皮细胞下有散在的、小块的EDDs。II期:GBM弥漫增厚,上皮细胞下有较大块的EDDs,GBM反应性增生而形成钉突。III期:EDDs被增生的GBM所包绕,形成链环状外观。IV期:GBM明显增厚,大部分EDDs被吸收而出现大小、形状、密度不一的EDDs和透亮区。这些EDDs的积累和最终溶解的过程相对缓慢,这有助于解释循环中自身抗体的变化与PMN临床表现之间的滞后关系。但目前大多数研究认为MN的病理分期和病程、治疗反应、临床预后并无直接的对应关系 [40] 。

5.4. PMN与SMN的病理学差异

5.4.1. IF

PMN显示沿GBM散在、球形、整体性、颗粒状的强烈IgG和C3沉积,以IgG4亚型为主,常有对应的抗原沉积;SMN则显示明亮的IgA、C1q、系膜染色,以IgG1亚型为主;狼疮性MN显示IgG、IgA、C1q、C3染色,可有“全房”染色模式(IgG、IgA、IgM、C1q和C3)、内皮细胞中的管状颗粒内含物、系膜染色等肾小球外染色 [11] [40] [41] 。

5.4.2. LM

PMN的GBM增厚改变是弥漫性和全局性的;而SMN则为局灶性和节段性的 [11] [41] 。

5.4.3. EM

PMN显示上皮下电子致密沉积物的形成;此外,系膜和/或内皮下存在电子致密沉积物、内皮细胞内有管状网状包涵体常提示SMN [11] [40] [41] 。

6. 膜性肾病的诊断

目前,肾组织活检(包括IF、LM、EM检查)仍然是诊断MN的金标准,构成了当前治疗的基础。当患者临床上表现为NS,且高度怀疑MN时应及时进行肾活检以明确诊断,并注意寻找原发病因,鉴别PMN与SMN。此外,MN靶抗原相关的循环抗体的检测,对于MN的早期诊断与治疗也有提示意义。约70%的PMN患者血清中可检测到抗PLA2R抗体,特异性较高 [15] ;约2%~5%的PMN患者血清中可检测到抗THSD7A抗体 [42] 。血清学中循环抗体的检测可以作为辅助MN诊断的一种无创方法,当检测到抗PLA2R抗体或抗THSD7A抗体时,提示PMN的可能性极大。抗体水平低则提示患者的缓解率较高、疗效较好,肾功能恶化的风险低,复发率也较低 [30] ,有助于临床医生制定针对性的治疗方案。循环中抗体的水平与患者蛋白尿的水平呈正相关,但抗体水平的变化多早于临床蛋白尿的变化 [30] ,在治疗中可以监测抗体的变化水平从而判断治疗是否有效以及病人的病程转归。因此,循环抗体的检测对于MN的早期诊断、临床治疗和预后监测具有重要意义。

7. 膜性肾病的治疗

根据2021年改善全球肾脏病预后指南(Kidney Disease: Improving Global Outcomes, KDIGO) [43] ,MN的治疗可分为对症治疗、免疫抑制治疗。

7.1. 对症治疗

针对年龄较轻、非肾病范围蛋白尿(<3.5 g/24h)、肾功能正常,血浆白蛋白水平正常或轻度下降的患者,临床上一般不主张使用免疫抑制治疗,而是采取对症治疗。包括使用利尿剂控制蛋白尿及消肿,血管紧张素转换酶抑制剂或血管紧张素Ⅱ受体拮抗剂(angiotensin converting enzyme inhibitors/angiotensin receptor blockers, ACEI/ARBs)控制血压,他汀类药物纠正脂代谢紊乱等 [44] 。当血清白蛋白降低显著(<25 g/L)时使用华法林抗凝治疗,预防深静脉血栓的形成 [45] 。

7.2. 免疫抑制剂治疗

当对症治疗6个月以上,患者的尿蛋白仍持续升高,或肾功能恶化,疾病进一步进展,应考虑进行免疫抑制治疗 [46] ,包括烷化剂(环磷酰胺或苯丁酸氮芥)联合糖皮质激素、钙调磷酸酶抑制剂(环孢素、他克莫司)单药治疗、吗替麦考酚酯、利妥昔单抗、雷公藤多甙等 [47] [48] 。

8. 总结与展望

综上所述,MN是引起成人NS最常见的病因,也是根据肾活检检查诊断出的最常见的肾小球疾病之一,它反映了肾小球损伤,其发病机制涉及免疫系统异常、遗传因素和环境因素等,需要进一步的研究来阐明。近年来人们在人类MN中发现了数十种靶抗原,这些足细胞自身抗原和种植抗原的发现、分子水平上的补体激活等构成了MN的发病机制,不同靶抗原相关性MN的临床病程、病理表现、治疗结果略有差异,使得该病的分类、诊断、监测、预后和精准治疗取得了很大的进步。总之,可以联合应用不同抗原相关性MN的肾组织活检的不同病理学特征和特异性抗体的血清学检测来诊断MN以及监测疾病的临床进展、疾病缓解和复发,针对抗原、抗体实施靶向精准治疗。未来的研究可能聚焦于更深入的分子层面了解膜性肾病的发病机制和病理过程,以及发展更创新的诊断和治疗方法。

参考文献

NOTES

*通讯作者。

参考文献

[1] Zabala Ramirez, M.J., Stein, E.J. and Jain, K. (2023) Nephrotic Syndrome for the Internist. Medical Clinics of North America, 107, 727-737.
https://doi.org/10.1016/j.mcna.2023.03.006
[2] Ronco, P. and Debiec, H. (2017) A Po-docyte View of Membranous Nephropathy: From Heymann Nephritis to the Childhood Human Disease. Pflügers Ar-chiv—European Journal of Physiology, 469, 997-1005.
https://doi.org/10.1007/s00424-017-2007-x
[3] Dantas, M., Silva, L.B.B., Pontes, B.T.M., et al. (2023) Mem-branous Nephropathy. Brazilian Journal of Nephrology, 45, 229-243.
https://doi.org/10.1590/2175-8239-jbn-2023-0046pt
[4] Ronco, P. and Debiec, H. (2015) Pathophysiological Advances in Membranous Nephropathy: Time for a Shift in Patient’s Care. Lancet, 385, 1983-1992.
https://doi.org/10.1016/S0140-6736(15)60731-0
[5] Starzynska-Kubicka, A., Perkowska-Ptasinska, A. and Gor-nicka, B. (2018) Membranous Glomerulonephritis—A Common, Unspecific Pattern of Glomerular Injury. Polish Jour-nal of Pathology, 69, 209-218.
https://doi.org/10.5114/pjp.2018.79540
[6] Polanco, N., Gutiérrez, E., Covarsí, A., et al. (2010) Spontaneous Remission of Nephrotic Syndrome in Idiopathic Membranous Nephropathy. Journal of the American Society of Neph-rology, 21, 697-704.
https://doi.org/10.1681/ASN.2009080861
[7] MacTier, R., Boulton Jones, J.M., Payton, C.D., et al. (1986) The Natural History of Membranous Nephropathy in the West of Scotland. Quarterly Journal of Medicine, 60, 793-802.
[8] Cattran, D.C., Kim, E.D., Reich, H., et al. (2017) Membranous Nephropathy: Quantifying Remission Duration on Outcome. Journal of the American Society of Nephrology, 28, 995-1003.
https://doi.org/10.1681/ASN.2015111262
[9] Glassock, R.J. (2021) Membranous Nephropathy: Classification Redux? Mayo Clinic Proceedings, 96, 523-525.
https://doi.org/10.1016/j.mayocp.2021.01.011
[10] Alsharhan, L. and Beck Jr., L.H. (2021) Membranous Nephropathy: Core Curriculum 2021. American Journal of Kidney Diseases, 77, 440-453.
https://doi.org/10.1053/j.ajkd.2020.10.009
[11] Safar-Boueri, L., Piya, A., Beck Jr., L.H., et al. (2021) Membra-nous Nephropathy: Diagnosis, Treatment, and Monitoring in the Post-PLA2R Era. Pediatric Nephrology, 36, 19-30.
https://doi.org/10.1007/s00467-019-04425-1
[12] Pozdzik, A., Touzani, F., Brocheriou, I. and Corazza, F. (2019) Molecular Classification of Membranous Nephropathy. Current Opinion in Nephrology and Hypertension, 28, 336-344.
https://doi.org/10.1097/MNH.0000000000000516
[13] Adler, S.G., Wang, H., Ward, H.J., et al. (1983) Electrical Charge. It’s Role in the Pathogenesis and Prevention of Experimental Membranous Nephropathy in the Rabbit. Journal of Clinical Investigation, 71, 487-499.
https://doi.org/10.1172/JCI110793
[14] Debiec, H., Guigonis, V., Mougenot, B., et al. (2002) Antenatal Membra-nous Glomerulonephritis Due to Anti-Neutral Endopeptidase Antibodies. The New England Journal of Medicine, 346, 2053-2060.
https://doi.org/10.1056/NEJMoa012895
[15] Beck Jr., L.H., Bonegio, R.G., Lambeau, G., et al. (2009) M-Type Phospholipase A2 Receptor as Target Antigen in Idiopathic Membranous Nephropathy. The New England Journal of Medicine, 361, 11-21.
https://doi.org/10.1056/NEJMoa0810457
[16] Tomas, N.M., Beck Jr., L.H., Meyer-Schwesinger, C., et al. (2014) Thrombospondin Type-1 Domain-Containing 7A in Idiopathic Membranous Nephropathy. The New England Journal of Medicine, 371, 2277-2287.
https://doi.org/10.1056/NEJMoa1409354
[17] Sethi, S. and Fervenza, F.C. (2023) Membranous Nephropa-thy-Diagnosis and Identification of Target Antigens. Nephrology Dialysis Transplantation.
https://doi.org/10.1093/ndt/gfad227
[18] Sethi, S., Madden, B.J., Debiec, H., et al. (2019) Exostosin 1/Exostosin 2-Associated Membranous Nephropathy. Journal of the American Society of Nephrology, 30, 1123-1136.
https://doi.org/10.1681/ASN.2018080852
[19] Sethi, S., Debiec, H., Madden, B., et al. (2020) Neural Epidermal Growth Factor-Like 1 Protein (NELL-1) Associated Membranous Nephropathy. Kidney International, 97, 163-174.
https://doi.org/10.1016/j.kint.2019.09.014
[20] Caza, T.N., Hassen, S.I., Kuperman, M., et al. (2021) Neural Cell Adhesion Molecule 1 Is a Novel Autoantigen in Membranous Lupus Nephritis. Kidney International, 100, 171-181.
https://doi.org/10.1016/j.kint.2020.09.016
[21] Sethi, S., Debiec, H., Madden, B., et al. (2020) Semaphorin 3B-Associated Membranous Nephropathy Is a Distinct Type of Disease Predominantly Present in Pediatric Patients. Kidney International, 98, 1253-1264.
https://doi.org/10.1016/j.kint.2020.05.030
[22] Sethi, S., Madden, B., Debiec, H., et al. (2021) Protocadherin 7-Associated Membranous Nephropathy. Journal of the American Society of Nephrology, 32, 1249-1261.
https://doi.org/10.1681/ASN.2020081165
[23] Al-Rabadi, L.F., Caza, T., Trivin-Avillach, C., et al. (2021) Serine Protease HTRA1 as a Novel Target Antigen in Primary Membranous Nephropathy. Journal of the American Society of Nephrology, 32, 1666-1681.
https://doi.org/10.1681/ASN.2020101395
[24] Reinhard, L., Machalitza, M., Wiech, T., et al. (2022) Netrin G1 Is a Novel Target Antigen in Primary Membranous Nephropathy. Journal of the American Society of Nephrology, 33, 1823-1831.
https://doi.org/10.1681/ASN.2022050608
[25] Caza, T.N., Hassen, S.I., Kenan, D.J., et al. (2021) Transforming Growth Factor β Receptor 3 (TGFBR3)-Associated Membranous Nephropathy. Kidney 360, 2, 1275-1286.
https://doi.org/10.34067/KID.0001492021
[26] Le Quintrec, M., Teisseyre, M., Bec, N., et al. (2021) Contactin-1 Is a Novel Target Antigen in Membranous Nephropathy Associated with Chronic Inflammatory Demyelinating Polyneu-ropathy. Kidney International, 100, 1240-1249.
https://doi.org/10.1016/j.kint.2021.08.014
[27] Sethi, S., Madden, B., Casal Moura, M., et al. (2022) Hematopoiet-ic Stem Cell Transplant-Membranous Nephropathy Is Associated with Protocadherin FAT1. Journal of the American Society of Nephrology, 33, 1033-1044.
https://doi.org/10.1681/ASN.2021111488
[28] Sethi, S., Madden, B., Casal Moura, M., et al. (2023) Membranous Nephropathy in Syphilis Is Associated with Neuron-Derived Neurotrophic Factor. Journal of the American Society of Nephrology, 34, 374-384.
https://doi.org/10.1681/ASN.0000000000000061
[29] Caza, T.N., Storey, A., Hassen, S.I., et al. (2023) Discovery of Seven Novel Putative Antigens in Membranous Nephropathy and Membranous Lupus Nephritis Identified By Mass Spectrometry. Kidney International, 103, 593-606.
https://doi.org/10.1016/j.kint.2023.01.001
[30] Burbelo, P.D., Joshi, M., Chaturvedi, A., et al. (2020) Detection of PLA2R Autoantibodies before the Diagnosis of Membranous Nephropathy. Journal of the American Society of Neph-rology, 31, 208-217.
https://doi.org/10.1681/ASN.2019050538
[31] Kistler, A.D. and Salant, D.J. (2023) Complement Activation and Effector Pathways in Membranous Nephropathy. Kidney International, 105, 473-483.
https://doi.org/10.1016/j.kint.2023.10.035
[32] Liu, W., Huang, G., Rui, H., et al. (2022) Course Monitoring of Membranous Nephropathy: Both Autoantibodies and Podocytes Require Multidimensional Attention. Autoimmunity Re-views, 21, Article ID: 102976.
https://doi.org/10.1016/j.autrev.2021.102976
[33] Yang, L., Wu, Y., Lin, S., et al. (2021) SPLA2-IB and PLA2R Mediate Insufficient Autophagy and Contribute to Podocyte Injury in Idiopathic Membranous Nephropathy by Activation of the P38MAPK/MTOR/ULK1 (Ser757) Signaling Pathway. FASEB Journal, 35, e21170.
https://doi.org/10.1096/fj.202001143R
[34] Chen, W., Lin, X., Huang, J., et al. (2014) Integrated Profiling of Mi-croRNA Expression in Membranous Nephropathy Using High-Throughput Sequencing Technology. International Journal of Molecular Medicine, 33, 25-34.
https://doi.org/10.3892/ijmm.2013.1554
[35] He, W., Zhang, J., Yuan, S., et al. (2021) Integrative Analysis of MiRNA-MRNA Network in Idiopathic Membranous Nephropathy by Bioinformatics Analysis. PeerJ, 9, e12271.
https://doi.org/10.7717/peerj.12271
[36] Liu, D., Liu, F., Wang, X., et al. (2018) MiR-130a-5p Prevents Angioten-sin II-Induced Podocyte Apoptosis by Modulating M-Type Phospholipase A2 Receptor. Cell Cycle, 17, 2484-2495.
https://doi.org/10.1080/15384101.2018.1542901
[37] Zhang, Q., Bin, S., Budge, K.L., et al. (2024) C3aR-Initiated Signaling Is a Critical Mechanism of Podocyte Injury in Membranous Nephropathy. JCI Insight, 9, e172976.
https://doi.org/10.1172/jci.insight.172976
[38] Nangaku, M., Shankland, S.J. and Couser, W.G. (2005) Cellular Response to Injury in Membranous Nephropathy. Journal of the American Society of Nephrology, 16, 1195-204.
https://doi.org/10.1681/ASN.2004121098
[39] Cunningham, P.N. and Quigg, R.J. (2005) Contrasting Roles of Complement Activation and Its Regulation in Membranous Nephropathy. Journal of the American Society of Nephrology, 16, 1214-1222.
https://doi.org/10.1681/ASN.2005010096
[40] Lerner, G.B., Virmani, S., Henderson, J.M., et al. (2021) A Con-ceptual Framework Linking Immunology, Pathology, and Clinical Features in Primary Membranous Nephropathy. Kid-ney International, 100, 289-300.
https://doi.org/10.1016/j.kint.2021.03.028
[41] Cai, Q. and Hendricks, A.R. (2020) Membranous Nephropathy: A Ten-Year Journey of Discoveries. Seminars in Diagnostic Pathology, 37, 116-120.
https://doi.org/10.1053/j.semdp.2020.01.001
[42] Tesar, V. and Hruskova, Z. (2021) Autoantibodies in the Diagnosis, Monitoring, and Treatment of Membranous Nephropathy. Frontiers in Immunology, 12, Article 593288.
https://doi.org/10.3389/fimmu.2021.593288
[43] Kidney Disease: Improving Global Outcomes (KDIGO) Glomer-ular Diseases Work Group (2021) KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney International, 100, S1-S276.
https://doi.org/10.1016/j.kint.2021.05.021
[44] Ronco, P., Beck, L., Debiec, H., et al. (2021) Membranous Nephropathy. Nature Reviews Disease Primers, 7, Article No. 69.
https://doi.org/10.1038/s41572-021-00303-z
[45] Sexton, D.J., De Freitas, D.G., Little, M.A., et al. (2018) Di-rect-Acting Oral Anticoagulants as Prophylaxis against Thromboembolism in the Nephrotic Syndrome. Kidney Interna-tional Reports, 3, 784-793.
https://doi.org/10.1016/j.ekir.2018.02.010
[46] Raza, A. and Aggarwal, S. (2021) Membranous Glomerulonephritis. StatPearls, Treasure Island.
[47] Fernandez-Juarez, G., Rojas-Rivera, J., Logt, A.V., et al. (2021) The STARMEN Trial Indicates That Alternating Treatment with Corticosteroids and Cyclophosphamide Is Superior to Sequential Treatment with Tacrolimus and Rituximab in Primary Membranous Nephropathy. Kidney International, 99, 986-998.
https://doi.org/10.1016/j.kint.2020.10.014
[48] Ronco, P., Plaisier, E. and Debiec, H. (2021) Advances in Mem-branous Nephropathy. Journal of Clinical Medicine, 10, Article 607.
https://doi.org/10.3390/jcm10040607