扩张型心肌病相关致病基因的研究进展
Research Progress of Pathogenic Genes Associated with Dilated Cardiomyopathy
DOI: 10.12677/ACM.2023.133525, PDF, HTML, XML, 下载: 301  浏览: 666 
作者: 王 姚, 胡 蓉, 杜建霖*:重庆医科大学附属第二医院心血管内科,重庆
关键词: 扩张型心肌病致病基因基因突变Dilated Cardiomyopathy Pathogenic Gene Gene Mutations
摘要: 扩张型心肌病(DCM)是一种心肌疾病,以结构(心室扩大)和功能(心肌收缩力降低)异常为特征,发病时除外高血压、心脏瓣膜病、先天性心脏病或缺血性心脏病等,病死率高,预后差,5年病死率为15%~50%。目前扩张型心肌病病因尚不明确,有研究表明扩张型心肌病是遗传异质性的,可通过筛选易感基因对扩张型心肌病进行早诊断、早治疗,现就近年来DCM致病基因研究做简要综述。
Abstract: Dilated Cardiomyopathy (DCM) is a myocardial disorder characterized by structural (ventricular enlargement) and functional (decreased myocardial contractility) abnormalities, excluding hyper-tension, valvular heart disease, congenital heart disease, or ischemic heart disease. Dilated cardio-myopathy has a high mortality rate and poor prognosis, with a 5-year case fatality rate of 15% to 50%. At present, the cause of dilated cardiomyopathy is not clear, some studies have shown that dilated cardiomyopathy is genetically heterogeneous, and dilated cardiomyopathy can be diag-nosed and treated early by screening susceptibility genes. This is a brief review of the research on DCM pathogenic genes in recent years.
文章引用:王姚, 胡蓉, 杜建霖. 扩张型心肌病相关致病基因的研究进展[J]. 临床医学进展, 2023, 13(3): 3663-3670. https://doi.org/10.12677/ACM.2023.133525

1. 引言

扩张型心肌病(Dilated Cardiomyopathy, DCM)是引起心力衰、心律失常和猝死的常见疾病之一,是一种心肌疾病,以结构(心室扩大)和功能(心肌收缩力降低)异常为特征,发病时除外高血压、心脏瓣膜病、先天性心脏病或缺血性心脏病等 [1] 。临床表现常为心脏逐步扩大、心室收缩功能降低、心力衰竭、室性心律失常、室上性心律失常、传导系统异常、血栓栓塞、猝死等。病死率高,预后差,5年病死率为15%~50% [2] [3] [4] 。DCM的病因很多,有基因突变、感染、自身免疫性疾病、接触毒素等。研究发现基因突变约占DCM病因的40%,已鉴定出50个以上的基因与DCM有关,主要包括BAG3,DES,FLNC,LMNA,MYH7,PLN,RBM20,SCN5A,TNNC1,TNNT2,TTN等常见基因突变 [5] [6] 。在各种研究中,有50个以上基因与之相关,突变基因编码具有广泛的细胞功能的蛋白质,编码细胞骨架、线粒体、肌节、桥粒、核膜等的基因突变都和DCM有关,所以,DCM的病理生理机制多种多样。现从下面几个方向对DCM的致病基因进行一个简要综述 [7] [8] [9] 。

2. 导致DCM的相关基因突变

扩张型心肌病(DCM)是一种可遗传性心肌病,其特征为遗传异质性、可变外显率和表达率 [10] 。目前已有大于50个具有人类遗传学证据的基因突变被证明和DCM的发生有关,其中,负责编码心肌细胞肌节蛋白以及细胞骨架蛋白的相关基因被证明与DCM的发生有着很密切的关系,被认为是DCM最常见的遗传致病基因 [11] 。同时,导致DCM的相关基因突变有着不同的遗传方式,包括常染色体显性遗传、常染色体隐性遗传、X-连锁遗传、线粒体遗传(见表1),其中常染色体显性遗传最为常见。

Table 1. Common pathogenic genes and inheritance of dilated cardiomyopathy

表1. 扩张型心肌病的常见致病基因及遗传方式

2.1. 常染色体显性遗传DCM相关致病基因

通过常染色体显性遗传方式导致DCM的致病基因较为常见,简述如下:

2.1.1. TTN基因(编码肌联蛋白)

截止目前为止,DCM的主要原因为TTN突变,TTN截断突变(TTNtv)与家族性DCM相关,约20%的病例。肌联蛋白是一种巨大的肌丝,从肌节的Z盘(N端)延伸到M带(C端)区域,由TTN基因编码 [12] [13] 。肌联蛋白的最大分子量约为4200 kDa,具有由免疫球蛋白(IG)和III型纤连蛋白(FnIII)结构域和独特序列组成的模块化结构域组成 [14] 。肌联蛋白可将生物信号转换成机械力进而调节心脏的收缩和舒张 [15] 。其中,导致DCM的TTN突变中,杂合性截断突变(TTNtv)最为常见,包括有移码突变、无义突变和必要的剪接位点突变 [16] ,TTNtv诱导的DCM发病年龄约40岁 [17] ,且TTNtv外显率具有性别依赖性,男性发病的中位年龄约为28岁,女性为56岁,携带TTNtv的女性患者预后比男性患者更好 [18] 。目前,TTNtv导致DCM的相关机制还有许多的不确定性,目前有关研究提出的解释包括有心脏代谢和信号的干扰、单倍体功能不全等机制。

2.1.2. LMNA基因(编码核纤层蛋白)

LMNA基因编码核纤层蛋白A/C,在DCM中较为常见,新近鉴定的LMNA基因突变,在维持正常细胞DNA复制、基因表达、有丝分裂和信号传导等方面有着很重要的作用。可导致Emery-Dreifuss肌营养不良、Slovenian型心-手综合、家族性部分脂肪营养障碍、Charcot-Marie-Tooth病、致死性限制性皮肤病等多种疾病表型。其中,LMNA基因突变导致的扩张型心肌病早发猝死风险高、发生率高、恶性程度高 [19] [20] [21] ,因其危害大,预后差,成为目前临床诊治难点。有研究揭示对于LMNA基因突变所致的DCM,虽然心脏彩色多普勒超声提示左室射血分数保留,但仍有很大的可能性会引起恶性心律失常,且此类患者病程进展快,常因为心力衰竭和恶性心律失常而有不良的结局 [22] [23] 。

LMNA基因突变主要的类型为错义突变和移码突变,占遗传性扩张型心肌病的10%~15% [7] 。LMNA有A型、B型、C型三种,以卷曲二聚体的形式存在于核内膜蛋白,LMNA能够参与到细胞的机械信号传导中,参与调节细胞的迁移、生长、分化等的过程 [24] [25] [26] 。LMNA基因突变可能会影响其正常的折叠,导致蛋白的完整性和其功能被破坏,进而导致DCM的发生 [27] 。

2.1.3. ACTC基因(编码肌动蛋白)

ACTC基因是第一个被发现的常染色体显性遗传DCM相关基因,位于常染色体15q14,ACTC基因编码肌小节细肌丝中的肌动蛋白,它是肌小节的重要组成部分,它通过和细胞膜之间的相互租用进而促进心肌细胞肌肉收缩、细胞运动、分化、移动等。ACTC基因有超过70种突变,其中超过90%为错义突变 [28] 。相关研究发现肌动蛋白单体中产生的部分错义突变,改变相关氨基酸序列,进而影响到肌小节与肌小节外细胞骨架的收缩力的传递,Kaski等研究发现ACTC第5外显子错义突变p.D313H,该突变位于肌动蛋白固定端的重要Tm结合位点,参与力的传导 [29] [30] 。

2.1.4. MYBPC3基因(编码心肌肌球蛋白结合-C)

MYBPC3基因编码肌小节粗肌丝蛋白,其中MYBPC3中的LoF变体是扩张型心肌病(DCM)伴相关传导缺陷的常见原因 [31] 。MYBPC既是肌节内的组成结构,同时在肌节内具有调节作用,近来有研究数据表明MYBPC在舒张和收缩中发挥作用 [32] [33] 。MYBPC3基因突变常见于肥厚型心肌病中,但有部分研究发现在DCM患者中携带有MYBPC3错义突变。

2.1.5. MYH7基因(编码肌球蛋白β重链)

心肌粗肌丝β-肌球蛋白重链(β-MYH 7)是定位于14号染色体长臂(q12)的主要肌节基因之一(22, 883 bp),由40个外显子编码 [34] 。且β-肌球蛋白重链(β-MYH 7)和肌球蛋白结合蛋白C (MYBPC3)是两个最常见的受累肌节基因,其中约50%与肥厚型心肌病有关,约10%与DCM有关。编码肌节蛋白的基因突变可能导致能量代谢受损,影响心脏泵血效率。有研究表明在β-MYH 7的突变中,改变了肌球蛋白头部结构域肌动蛋白(配体)结合区残基的构象,这一改变可能会影响肌动蛋白结合和心肌收缩功能 [35] 。

2.1.6. DES基因(编码结蛋白)

DES基因负责编码结蛋白,是中间丝家族的一种细胞骨架蛋白,常在Z线与肌肉的润盘间形成中介性细纤维,负责连接肌原纤维、Z线,使其附着于肌纤维膜上,帮助肌肉收缩。在DCM中发现的DES基因突变常常见于结蛋白的尾部,其发病机制主要是DES基因突变使结蛋白丧失功能,从而导致肌纤维的结构破坏、功能丧失,肌细胞退变,进一步导致DCM的发生 [36] 。

2.1.7. TNNT2基因(编码肌钙蛋白T)

TNNT2基因位于染色体1q32,其由17个外显子构成,长度约为17,000 bp。有相关研究曾统计出TNNT2基因最常见为错义突变,通常发生在8~16外显子上。TNNT2基因主要编码肌小节细肌丝蛋白、心肌肌钙蛋白T,而心肌肌钙蛋白T是肌钙蛋白复合物的重要组分,其将肌钙蛋白复合物与肌节中的原肌球蛋白连接,TNNT2基因突变导致15%的家族性肥厚型心肌病,同时有研究发现TNNT2基因突变导致约3%的家族性DCM病例发生 [37] [38] [39] 。

2.1.8. SGCD基因(编码肌膜跨膜糖蛋白)

SGCD基因位于染色体5q33-34,其编码产物δ肌聚糖,参与组成肌聚糖复合物,可稳定肌细胞膜,后者是肌营养不良蛋白相关糖蛋白复合物(DGC)蛋白的成分之一。DGC成员通过连接细胞外基质与细胞骨架,在维持细胞膜完整性方面发挥核心作用,从而保护肌纤维免受收缩诱导的损伤和坏死 [40] 。肌聚糖亚复合物是DGC的组成部分,具有不同组织间不同的特定组成。在心肌中,DGC复合物主要由四种组分α、β、γ和δ肌聚糖组成,主要通过与介导细胞粘附至细胞外基质的整联蛋白相互作用参与肌膜完整性。有相关研究表明肌聚糖复合物参与信号转导,α、β、γ和δ肌聚糖基因突变导致一组异质性常染色体隐性肢体带状肌营养不良(LGMD 2C-F),临床特征为进行性肌无力。另一方面,由SGCD基因突变引起的LGMD 2F常常与潜在致命的DCM有关。与常染色体隐性LGMD 2C-F相反,由SGCD基因突变引起的孤立性家族性DCM患者提示常染色体显性遗传模式 [41] - [46] 。

2.1.9. 其他基因

除以上罗列出的基因外,包括编码纽带蛋白的VCL基因,编码α原肌球蛋白的TPM1基因,编码α2辅肌动蛋白的ACTN2基因,编码受磷蛋白的PLN基因,编码肌肉LM蛋白的MLP/SCRP3基因,编码SUR2A的ABCC9基因,编码钠离子通道的SCN5A基因,编码α-肌球蛋白重链的MYH6基因等等相关基因均被证明为常染色体显性遗传。

2.2. 常染色体隐性遗传DCM基因

TNNI3基因位于常染色体19q13,属于常染色体隐性遗传基因,包含8个外显子,编码210个氨基酸的蛋白质,其编码的肌钙蛋白I是横纹肌肌节细肌丝中肌钙蛋白复合物的抑制性亚单位,在肌收缩和舒张的钙调节中起着重要作用,但TNNI3基因所编码的肌钙蛋白I只在心脏中表达。根据以往研究发现,DCM致病基因中第一个被发现的常染色体隐性遗传致病基因就是TNNI3基因。细胞内Ca2+水平的主要传感器是肌钙蛋白复合物,负责参与心脏的收缩和舒张,其作用是控制心肌中肌肉的收缩和舒张时粗细纤维之中的相互作用。但是肌钙蛋白I可以抑制肌动蛋白与肌球蛋白的相互作用从而抑制心肌细胞的收缩。TNNI3基因突变使肌钙蛋白之间的相互作用减弱,从而使心肌收缩力减弱 [47] [48] [49] 。

2.3. 线粒体DNA遗传的DCM基因

线粒体DNA (mt DNA)编码2种核糖体RNA和22种转运RNA,它们参与线粒体的转录和翻译。线粒体DNA突变导致线粒体转运RNA结构异常或种类不全、核糖体RNA不全,从而导致蛋白质功能异常或合成受阻,促使呼吸链中多种酶的活性降低,ATP生成显著减少,导致心肌细胞死亡。其所致的心肌疾病,特征为心肌结构、功能或两者均异常,继发于涉及线粒体呼吸链的遗传缺陷,且无伴随冠状动脉疾病、高血压、瓣膜疾病或先天性心脏病。线粒体疾病的典型心脏表现为肥厚型或者扩张型心肌病、心律失常、左室心肌致密化不全和心力衰竭 [50] 。

2.4. X连锁遗传的DCM基因

1987年Berko和Swift首先描述了DCM的性连锁遗传现象。

2.4.1. DMD基因(抗肌萎缩蛋白)

DMD基因为X连锁遗传基因,其编码抗肌萎缩蛋白,也可以叫做肌营养不良蛋白。DMD基因是一个位于染色体Xp21.1上的2.5 Mb基因,是已知最大的基因,包含79个外显子,编码14 kb转录本 [51] [52] 。其在连接肌节与肌纤维膜和细胞外基质中起主要作用。DMD基因突变可导致心脏收缩系统结构完整性的改变,进而使心肌细胞骨架与细胞外基质连接减弱或丧失,其中,既往报道中有出现缺失突变、点突变、插入突变以及倒置突变 [53] 。

2.4.2. TAZ/G4.5基因(Tafazzins蛋白)

TAZ/G4.5基因主要编码是tafazzins蛋白家族,位于性染色体Xq28,其功能尚未完全发现,但其与Barth综合征有着很大的关联。TAZ/基因产生错义突变以及缺失突变,将会导致X-连锁遗传性的DCM发生。X连锁的心肌纤维弹性组织增生DCM的主要特点是:婴儿期死亡、嗜中性白细胞减少、线粒体异常等。

3. 小结

综上所述,DCM是由多种基因突变引起的遗传性疾病,主要遗传方式为常染色体显性遗传,但目前我们对DCM的基因突变级相关发病机制的研究和了解还有限,随着现代医学技术的发展与进步,越来越多的DCM致病基因被发现,DCM的致病机制也将得到进一步阐明。

NOTES

*通讯作者。

参考文献

[1] (2019) Dilated Cardiomyopathy. Nature Reviews Disease Primers, 5, Article No. 33.
https://doi.org/10.1038/s41572-019-0088-x
[2] 中华医学会心血管病学分会, 中国心肌炎心肌病协作组. 中国扩张型心肌病诊断和治疗指南[J]. 临床心血管病杂志, 2018, 34(5): 421-434.
[3] Lakdawala, N.-K., Winterfield, J.-R. and Funke, B.-H. (2013) Dilated Cardiomyopathy. Circulation: Arrhythmia and Electrophysiology, 6, 228-237.
https://doi.org/10.1161/CIRCEP.111.962050
[4] Weintraub, R.-G., Semsarian, C. and Macdonald, P. (2017) Di-lated Cardiomyopathy. The Lancet, 390, 400-414.
https://doi.org/10.1016/S0140-6736(16)31713-5
[5] Ito, M. and Nomura, S. (2018) Cardiomyopathy with LMNA Mutation. International Heart Journal, 59, 462-464.
https://doi.org/10.1536/ihj.18-214
[6] Yamada, T. and Nomura, S. (2021) Recent Findings Related to Cardiomy-opathy and Genetics. International Journal of Molecular Sciences, 22, 12522.
https://doi.org/10.3390/ijms222212522
[7] McNally, E.-M. and Mestroni, L. (2017) Dilated Cardiomyopathy. Circulation Research, 121, 731-748.
https://doi.org/10.1161/CIRCRESAHA.116.309396
[8] Millat, G., Bouvagnet, P., Chevalier, P., et al. (2011) Clinical and Mutational Spectrum in a Cohort of 105 Unrelated Patients with Dilated Cardiomyopathy. European Journal of Medical Genetics, 54, e570-e575.
https://doi.org/10.1016/j.ejmg.2011.07.005
[9] Verdonschot, J.A.J., Hazebroek, M.-R., Krapels, I.P.C., et al. (2020) Implications of Genetic Testing in Dilated Cardiomyopathy. Circulation: Genomic and Precision Medicine, 13, 476-487.
https://doi.org/10.1161/CIRCGEN.120.003031
[10] Hershberger, R.-E., Hedges, D.-J. and Morales, A. (2013) Dilated Cardiomyopathy: The Complexity of a Diverse Genetic Architecture. Nature Reviews Cardiology, 10, 531-547.
https://doi.org/10.1038/nrcardio.2013.105
[11] Jordan, E., Peterson, L., Ai, T., et al. (2021) Evidence-Based As-sessment of Genes in Dilated Cardiomyopathy. Circulation, 144, 7-19.
https://doi.org/10.1161/CIRCULATIONAHA.120.053033
[12] Bang, M.-L., Centner, T., Fornoff, F., et al. (2001) The Complete Gene Sequence of Titin, Expression of an Unusual ≈700-kDa Titin Isoform, and Its Interaction with Ob-scurin Identify a Novel Z-Line to I-Band Linking System. Circulation Research, 89, 1065-1072.
https://doi.org/10.1161/hh2301.100981
[13] The Organization of Titin Filaments in the Half-Sarcomere Revealed by Monoclonal Antibodies in Immunoelectron Microscopy: A Map of Ten Nonrepetitive Epitopes Starting at the Z Line Extends Close to the M Line.
[14] Labeit, S. and Kolmerer, B. (1995) Titins: Giant Proteins in Charge of Muscle Ultra-structure and Elasticity. Science, 270, 293-296.
https://doi.org/10.1126/science.270.5234.293
[15] Knöll, R., Hoshi-jima, M., Hoffman, H.-M., et al. (2002) The Cardiac Mechanical Stretch Sensor Machinery Involves a Z Disc Complex that Is Defective in a Subset of Human Dilated Cardiomyopathy. Cell, 111, 943-955.
https://doi.org/10.1016/S0092-8674(02)01226-6
[16] Roberts, A.-M., Ware, J.-S., Herman, D.-S., et al. (2015) Integrated Allelic, Transcriptional, and Phenomic Dissection of the Cardiac Effects of Titin Truncations in Health and Disease. Science Translational Medicine, 7, 270r-276r.
[17] Fatkin, D. and Huttner, I.-G. (2017) Titin-Truncating Muta-tions in Dilated Cardiomyopathy. Current Opinion in Cardiology, 32, 232-238.
https://doi.org/10.1097/HCO.0000000000000382
[18] Franaszczyk, M., Chmielewski, P., Truszkowska, G., et al. (2017) Titin Truncating Variants in Dilated Cardiomyopathy—Prevalence and Genotype-Phenotype Correlations. PLOS ONE, 12, e169007.
https://doi.org/10.1371/journal.pone.0169007
[19] Bione, S., Small, K., Aksmanovic, V.-M., et al. (1995) Identifi-cation of New Mutations in the Emery-Dreifuss Muscular Dystrophy Gene and Evidence for Genetic Heterogeneity of the Disease. Human Molecular Genetics, 4, 1859-1863.
https://doi.org/10.1093/hmg/4.10.1859
[20] Lu, J.-T., Muchir, A., Nagy, P.-L., et al. (2011) Cardiomyopathy: Cell Biology and Genetics Meet Clinical Medicine. Disease Models & Mechanisms, 4, 562-568.
https://doi.org/10.1242/dmm.006346
[21] Captur, G., Arbustini, E., Bonne, G., et al. (2018) Lamin and the Heart. Heart, 104, 468-479.
https://doi.org/10.1136/heartjnl-2017-312338
[22] Kumar, S., Baldinger, S.-H., Gandjbakhch, E., et al. (2016) Long-Term Arrhythmic and Nonarrhythmic Outcomes of Lamin A/C Mutation Carriers. Journal of the American College of Cardiology, 68, 2299-2307.
https://doi.org/10.1016/j.jacc.2016.08.058
[23] Peters, S., Kumar, S., Elliott, P., et al. (2019) Arrhythmic Geno-types in Familial Dilated Cardiomyopathy: Implications for Genetic Testing and Clinical Management. Heart, Lung and Circulation, 28, 31-38.
https://doi.org/10.1016/j.hlc.2018.09.010
[24] Donnaloja, F., Carnevali, F., Jacchetti, E., et al. (2020) Lamin A/C Mechanotransduction in Laminopathies. Cells, 9, 1306.
https://doi.org/10.3390/cells9051306
[25] Malashicheva, A. and Perepelina, K. (2021) Diversity of Nuclear Lamin A/C Action as a Key to Tissue-Specific Regulation of Cellular Identity in Health and Disease. Frontiers in Cell and Developmental Biology, 9, Article ID: 761469.
https://doi.org/10.3389/fcell.2021.761469
[26] Martino, F., Perestrelo, A.-R., Vinarský, V., et al. (2018) Cellular Mechanotransduction: From Tension to Function. Frontiers in Physiology, 9, 824.
https://doi.org/10.3389/fphys.2018.00824
[27] Melcer, S. and Meshorer, E. (2010) The Silence of the LADs: Dy-namic Genome-Lamina Interactions during ESC Differentiation. Cell Stem Cell, 6, 495-497.
https://doi.org/10.1016/j.stem.2010.05.006
[28] Parker, F., Baboolal, T.-G. and Peckham, M. (2020) Actin Muta-tions and Their Role in Disease. International Journal of Molecular Sciences, 21, 3371.
https://doi.org/10.3390/ijms21093371
[29] Olson, T.-M., Michels, V.-V., Thibodeau, S.-N., et al. (1998) Actin Mutations in Dilated Cardiomyopathy, a Heritable Form of Heart Failure. Science, 280, 750-752.
https://doi.org/10.1126/science.280.5364.750
[30] Kaski, J.-P., Syrris, P., Burch, M., et al. (2008) Idiopathic Re-strictive Cardiomyopathy in Children Is Caused by Mutations in Cardiac Sarcomere Protein Genes. Heart, 94, 1478-1484.
https://doi.org/10.1136/hrt.2007.134684
[31] Ito, K., Patel, P.-N., Gorham, J.-M., et al. (2017) Identification of Pathogenic Gene Mutations in LMNA and MYBPC3 That Alter RNA Splicing. Proceedings of the National Academy of Sciences, 114, 7689-7694.
https://doi.org/10.1073/pnas.1707741114
[32] Stelzer, J.-E., Dunning, S.-B. and Moss, R.-L. (2006) Ablation of Cardiac Myosin-Binding Protein-C Accelerates Stretch Activation in Murine Skinned Myocardium. Circulation Research, 98, 1212-1218.
https://doi.org/10.1161/01.RES.0000219863.94390.ce
[33] Pohlmann, L., Kroger, I., Vignier, N., et al. (2007) Cardiac Myosin-Binding Protein C Is Required for Complete Relaxation in Intact Myocytes. Circulation Research, 101, 928-938.
https://doi.org/10.1161/CIRCRESAHA.107.158774
[34] Jaenicke, T., Diederich, K.-W., Haas, W., et al. (1990) The Complete Sequence of the Human β-Myosin Heavy Chain Gene and a Comparative Analysis of Its Product. Genomics, 8, 194-206.
https://doi.org/10.1016/0888-7543(90)90272-V
[35] Rani, D.-S., Vijaya, K.-A., Nallari, P., et al. (2022) Novel Mutations in Beta-MYH7 Gene in Indian Patients with Dilated Cardiomyopathy. CJC Open, 4, 1-11.
https://doi.org/10.1016/j.cjco.2021.07.020
[36] Lillioja, S., Mott, D.-M., Spraul, M., et al. (1993) Insulin Re-sistance and Insulin Secretory Dysfunction as Precursors of Non-Insulin-Dependent Diabetes Mellitus. Prospective Studies of Pima Indians. The New England Journal of Medicine, 329, 1988-1992.
https://doi.org/10.1056/NEJM199312303292703
[37] Farza, H., Townsend, P.-J., Carrier, L., et al. (1998) Ge-nomic Organisation, Alternative Splicing and Polymorphisms of the Human Cardiac Troponin T Gene. Journal of Mo-lecular and Cellular Cardiology, 30, 1247-1253.
https://doi.org/10.1006/jmcc.1998.0698
[38] Jáchymová, M., Muravská, A., Paleček, T., et al. (2012) Genetic Var-iation Screening of TNNT2 Gene in a Cohort of Patients with Hypertrophic and Dilated Cardiomyopathy. Physiological Research, 61, 169-175.
https://doi.org/10.33549/physiolres.932157
[39] Seidman, J.-G. and Christine, S. (2001) The Genetic Basis for Cardiomyopathy: From Mutation Identification to Mechanistic Paradigms. Cell, 104, 557-567.
https://doi.org/10.1016/S0092-8674(01)00242-2
[40] Lapidos, K.-A., Kakkar, R. and McNally, E.-M. (2004) The Dystrophin Glycoprotein Complex. Circulation Research, 94, 1023-1031.
https://doi.org/10.1161/01.RES.0000126574.61061.25
[41] Yoshida, T., Pan, Y., Hanada, H., et al. (1998) Bidi-rectional Signaling between Sarcoglycans and the Integrin Adhesion System in Cultured L6 Myocytes. The Journal of Biological Chemistry, 273, 1583-1590.
https://doi.org/10.1074/jbc.273.3.1583
[42] Yoshida, M., Hama, H., Ishikawa-Sakurai, M., et al. (2000) Biochem-ical Evidence for Association of Dystrobrevin with the Sarcoglycan-Sarcospan Complex as a Basis for Understanding Sarcoglycanopathy. Human Molecular Genetics, 9, 1033-1040.
https://doi.org/10.1093/hmg/9.7.1033
[43] Zatz, M., de Paula Flavia, S.A., et al. (2003) The 10 Autosomal Recessive Limb-Girdle Muscular Dystrophies. Neuromuscular Disorders, 13, 532-544.
https://doi.org/10.1016/S0960-8966(03)00100-7
[44] Sandonà, D. and Betto, R. (2009) Sarcoglycanopathies: Molecular Pathogenesis and Therapeutic Prospects. Expert Reviews in Molecular Medicine, 11, e28.
https://doi.org/10.1017/S1462399409001203
[45] Rkk Inen, S.K., Miettinen, R., Tuomainen, P., et al. (2003) A Novel Mutation, Arg71Thr, in the δ-Sarcoglycan Gene Is Associated with Dilated Cardiomyopathy. Journal of Molecu-lar Medicine, 81, 795-800.
https://doi.org/10.1007/s00109-003-0480-5
[46] Politano, L., Nigro, V., Passamano, L., et al. (2001) Evaluation of Cardiac and Respiratory Involvement in Sarcoglycanopathies. Neuromuscular Disorders, 11, 178-185.
https://doi.org/10.1016/S0960-8966(00)00174-7
[47] 扬翼, 谢利剑, 肖婷婷, 等. 限制型心肌病患儿致病基因检测1例报告[J]. 临床儿科杂志, 2021, 39(1): 65-68, 73.
[48] Murphy, R.-T., Mogensen, J., Shaw, A., et al. (2004) Novel Mutation in Cardiac Troponin I in Recessive Idiopathic Dilated Cardiomyopathy. The Lancet, 363, 371-372.
https://doi.org/10.1016/S0140-6736(04)15468-8
[49] Sheng, J.-J. and Jin, J.-P. (2016) TNNI1, TNNI2 and TNNI3: Evolution, Regulation, and Protein Structure-Function Relationships. Gene, 576, 385-394.
https://doi.org/10.1016/j.gene.2015.10.052
[50] Govindaraj, P., Rani, B., Sundaravadivel, P., et al. (2019) Mito-chondrial Genome Variations in Idiopathic Dilated Cardiomyopathy. Mitochondrion, 48, 51-59.
https://doi.org/10.1016/j.mito.2019.03.003
[51] Hoffman, E.-P., Brown, R.H. and Kunkel, L.-M. (1987) Dystro-phin: The Protein Product of the Duchenne Muscular Dystrophy Locus. Cell, 51, 919-928.
https://doi.org/10.1016/0092-8674(87)90579-4
[52] Kamdar, F. and Garry, D.-J. (2016) Dystrophin-Deficient Cardiomyopathy. Journal of the American College of Cardiology, 67, 2533-2546.
https://doi.org/10.1016/j.jacc.2016.02.081
[53] Towbin, J.-A., Hejtmancik, J.-F., Brink, P., et al. (1993) X-Linked Dilated Cardiomyopathy. Molecular Genetic Evidence of Linkage to the Duchenne Muscular Dystrophy (Dystrophin) Gene at the Xp21 Locus. Circulation, 87, 1854-1865.
https://doi.org/10.1161/01.CIR.87.6.1854