肠道微生物群与2型糖尿病并发症的关系
Relationship between Intestinal Microbiota and Complications of Type 2 Diabetes
DOI: 10.12677/ACM.2023.132194, PDF, HTML, XML, 下载: 354  浏览: 563  科研立项经费支持
作者: 孙佳乐:青海大学,青海 西宁;罗 玮*:青海省人民医院,青海 西宁
关键词: 肠道微生物群2型糖尿病糖尿病并发症Gut Microbiota Type 2 Diabetes Diabetic Complications
摘要: 2型糖尿病(T2DM)是世界上常见的代谢性疾病之一,其发病率和流行率仍在不断上升。研究发现,肠道微生物群失调与代谢综合征之间存在紧密联系。肠道微生物群组成的改变与2型糖尿病及其并发症的发生及进展有着密切关系,肠道微生物群能够通过降低葡萄糖耐量来改善胰岛素抵抗。在本篇综述中,我们探讨了肠道微生物群紊乱与2型糖尿病进展及主要糖尿病大血管并发症(冠状动脉疾病)和微血管并发症(肾病、视网膜病变和神经病变)的改变,并探索通过肠道微生物群与益生菌为2型糖尿病及其并发症的治疗提供新的治疗策略。
Abstract: Type 2 diabetes (T2DM) is one of the most common metabolic diseases in the world, and its inci-dence rate and prevalence are still rising. Studies have found that there is a close relationship be-tween intestinal microbiota disorder and metabolic syndrome. The change of intestinal microbiota composition is closely related to the occurrence and progress of type 2 diabetes and its complica-tions. The intestinal microbiota can improve insulin resistance by reducing glucose tolerance. In this review, we discussed the progress of intestinal microbiota disorder and type 2 diabetes, and the changes of major vascular complications (coronary artery disease) and microvascular complica-tions (kidney disease, retinopathy and neuropathy) of diabetes, and explored new treatment strat-egies for type 2 diabetes and its complications through intestinal microbiota and probiotics.
文章引用:孙佳乐, 罗玮. 肠道微生物群与2型糖尿病并发症的关系[J]. 临床医学进展, 2023, 13(2): 1410-1415. https://doi.org/10.12677/ACM.2023.132194

1. 引言

肠道微生物群是由不同的微生物群落组成的生态系统,主要由大约有1000个不同种类的细菌组成,但也包含如真菌、病毒和原核生物等其他共生物 [1] 。肠道微生物群紊乱主要是由于细菌和真菌多样性和丰富性降低,特别是参与功能障碍和病理改变的菌群变化 [2] ,通过胆汁酸代谢、炎症改变、胰岛素抵抗以及肠促胰岛素分泌的影响而引起的免疫和代谢以及神经元紊乱,导致肥胖、2型糖尿病等代谢综合征的发生 [3] 。细菌死亡后释放内毒素引起的内毒素血症也是肠道微生物群引起慢性全身性炎症的重要因素 [4] 。虽然肠道微生物群与2型糖尿病的发生和进展之间的联系仍在研究之中,但迄今为止的大部分研究都集中在糖尿病的病理生理学上,而对肠道微生物群与2型糖尿病并发症的相关研究较少。因此,探索肠道微生物与2型糖尿病并发症之间的关系能够有助于改变2型糖尿病的病程或延迟并发症的出现,进一步在2型糖尿病的预防阶段进行干预。

2. 肠道微生物群,2型糖尿病及其并发症

糖尿病(DM)已成为全球性问题,主要是由于胰岛素分泌减少或组织中胰岛素敏感性降低引起血糖升高。最新预测估计全世界现有4.63亿糖尿病患者,到2045年将增加至7亿病例,主要为2型糖尿病,占糖尿病的90%~95% [5] 。长期持续高血糖会诱发机体血管改变,引起来自冠状动脉、肾脏、眼睛和神经系统的病变 [6] 。肠道微生物群组成的变化与2型糖尿病及其并发症的发生发展之间有紧密联系,细菌及代谢产物通过影响肠道屏障引发糖尿病特有的炎性反应,特别是拟杆菌门/厚壁菌门的比例改变会影响肠道通透性,同时部分细菌(发酵乳杆菌、植物乳杆菌和脆弱拟杆菌)通过降低炎症诱发因素,抑制促炎因子降低葡萄糖代谢和胰岛素敏感性,来延缓2型糖尿病及其并发症进展,并通过维护肠道屏障的完整性来保护肠道 [7] 。这表明肠道微生物在葡萄糖代谢中的影响,可以通过改变肠道微生物群的组成,来降低炎症反应、调节葡萄糖稳态、改善肠道通透性 [8] [9] 。为探究2型糖尿病及并发症的治疗提供新的方向。

3. 肠道微生物群与2型糖尿病冠状动脉疾病的关系

冠状动脉疾病的发展是决定糖尿病患者长期预后的重要影响因素,同时也是糖尿病患者早期死亡的主要原因。长期持续高血糖、胰岛素抵抗和脂肪酸过量会加重氧化应激反应,破坏蛋白激酶C信号通路,引起糖基化终产物增加,引起血管炎性改变、血管收缩、血栓形成和动脉粥样硬化,最终导致死亡 [10] 。研究发现在糖尿病临床诊断前期,糖尿病患者合并冠状动脉疾病的风险(心肌梗死)的概率是健康成年人的2到3倍。特别是糖化血红蛋白(HbA1c)升高会加重心肌梗死风险,且死亡率比健康成年明显升高。肠道微生物在胆固醇和尿酸代谢以及氧化应激和炎症反应代谢过程中起重要作用,通过影响代谢反应,诱发动脉粥样硬化或冠状动脉疾病。肠道微生物失调会影响胆固醇代谢,高胆固醇血症是冠状动脉疾病的的危险因素,由此推测肠道菌群失调可能是冠状动脉疾病的危险因素。肠道微生物参与胆固醇的代谢,从而改变胆汁酸代谢,影响胆固醇循环,可知肠道微生物群在高胆固醇血症的发生中有重要作用。与健康人相比,合并冠状动脉疾病的2型糖尿病患者肠道微生物群中成熟乳酸杆菌、大肠杆菌-志贺氏菌、肠球菌和拟杆菌门/厚壁菌门的比例都是增加的,Roseburia和真杆菌、拟杆菌(双歧杆菌和普雷沃特菌)和携带丁酸盐的细菌,如粪杆菌、Roseburia和直肠真杆菌的数量是下降的 [11] 。临床试验发现植物乳杆菌和鼠李糖乳杆菌可以降低梗死面积的大小,同时改善左心室肥大,恢复部分左心室梗死后的功能,在肠道微生物构成比例较低的情况下,肠道微生物群通过产生胆汁酸、粪甾烷醇、短链脂肪酸和三甲胺氧化物等代谢物会增加冠状动脉疾病发病率 [12] 。有实验表明冠状动脉疾病患者接受含有添加双歧杆菌,干酪乳酸杆菌,嗜酸乳酸杆菌的益生菌饮料6周后,内皮血管功能得到改善,全身炎症减少;12周后,患者血糖控制得到改善,HDL胆固醇升高,总胆固醇与HDL-胆固醇比值降低,氧化应激生物标志物降低,这表明通过善肠道微生物群失调和添加益生菌来治疗2型糖尿病合并冠状动脉疾病,以及在预防心血管疾病的发生发展方面是一种很有意义的方法 [7] 。

4. 肠道微生物群与2型糖尿病肾病的关系

糖尿病肾病(DKD)是糖尿病常见的微血管并发症,影响约25%的糖尿病人群,肠道微生物已被证明可以影响慢性肾病(CKD)和终末期肾病(ESRD)的发生和进展 [13] 。在对合并慢性肾脏疾病的2型糖尿病患者研究中发现患者肠道微生物群的失调、细菌代谢产物的积累、肠道屏障功能的破坏以及慢性炎症会导致肠道微生物群紊乱 [14] [15] ,大多数患者肠道中细菌过度生长,并伴有多样性减低 [16] ,双歧杆菌、拟杆菌和乳酸杆菌的比例下降,副杆菌、肠球菌、肠杆菌和克雷伯氏菌的比例增加,而参与抗炎作用和保护肠道屏障完整性相关的细菌,如乳杆菌、和双歧杆菌则是罕见的,并表现出厌氧菌比例下降 [17] 。尤其是梭状芽胞杆菌的比例增加会诱发全身炎症反应,加速糖尿病肾病进展,导致肾衰竭 [14] 。在临床试验中发现给予嗜酸乳酸杆菌、嗜热链球菌和长双歧杆菌的混合物以及服用含有乳酸杆菌的乳制品一段时间后,血液中的尿素氮水平和尿酸浓度都会出现下降。随着终末期肾病的恶性进展 [18] ,将患有终末期肾病的肠道微生物群移植到腺嘌呤诱导的慢性肾病模型无菌小鼠中,Eggerthella lenta、Flavonifractor spp、Alistipes spp、Ruminococcus spp和Fusobacterium spp明显增加,产生短链脂肪酸(SCFA)的细菌,特别是产丁酸的细菌的丰度下降,会使微生物群、营养素和调节代谢产物发生改变,最终导致尿毒症毒素的产生,继而进展为尿毒症的临床综合征,验证了肠道微生物改变对终末期肾病也有影响 [19] 。因此调节肠道微生物群的组成以及通过给予糖尿病肾病患者补充益生菌可能是控制甚至预防疾病的一种新策略。

5. 肠道微生物群与2型糖尿病视网膜病变的关系

糖尿病视网膜病变(DR)是糖尿病的主要微血管并发症,也是引起失明和视力受损的原因,到2030年将增加至近1.91亿患者 [20] 。DR的发生是氧化应激反应和炎性反应增加诱发肾素–血管紧张素系统功能损害,引起视网膜小胶质细胞的活化和免疫细胞浸润所致 [21] 。微生物群在眼睛组成是不同的,内眼室是由无菌环境构成,而外眼室则暴露在环境微生物中。微生物群在眼睛主要是变形杆菌、放线菌和厚壁菌组成,占眼睛中微生物的87% [22] 。研究通过对比患有DR的患者与未发生DR患者发现眼表肠道微生物群的紊乱与各种眼病的发生存在联系,DR患者中Bacteroidetes、Actinobacteria以及毛霉菌和巴氏杆菌的比例明显下降。而氨基球菌、大肠杆菌和肠杆菌的比例显著增加 [23] 。这表明肠道微生物的改变与糖尿病视网膜病变有关,可通过调节肠道微生物群减少毛细血管细胞丢失和降低视网膜中细胞因子的炎症表达及减少视网膜胶质细胞增生 [24] 。并通过肠道微生物群的调节来降低眼内压,进一步改善DR。

6. 肠道微生物群与2型糖尿病神经病变的关系

2型糖尿病神经病变是一种神经退行性营养性疾病,特点是周围神经减少,神经性炎症以及脱髓鞘改变,轴突萎缩和神经元再生能力下降,主要是通过长期损害周围神经引起疼痛和麻木 [25] [26] 。在长期持续高血糖患者中发病率为30%~50%,表现为肢体敏感性下降和运动功能减低,可能与运动感觉功能受损,引起行动不便,麻木甚至疼痛 [27] [28] [29] 。大约有50%的2型糖尿病患者存在神经病变并影响身体机能改变,如胰岛素抵抗、肠道运输功能障碍、激素紊乱等症状 [26] 。研究表明肠道微生物的多样性变化与胰岛素抵抗以及氧化应激反应、多元醇途径的激活有关,从而引发2型糖尿病神经病变 [30] [31] 。通过对比2型糖尿病合并神经病变、2型糖尿病未合并神经病变的患者与健康人群的肠道微生物,发现合并2型糖尿病神经病变的患者Firmicutes、Actinobacteria、Escherichia-Shigella、Lachnoclostridium、Blautia、Megasphaera和反刍球菌的菌属数量增加,Bacteroides和粪便细菌菌属数量减少 [32] 。由此推测肠道微生物群的变化会引起胰岛素抵抗,可以通过给予双歧杆菌和Lactobacillus来调节肠道微生物群以及改善胰岛素抵抗 [33] ,并探索通过调节肠道微生物群来预防、控制2型糖尿病神经病变。

7. 结论与未来展望

越来越多的研究表明肠道微生物群可能是机体调节葡萄糖代谢和免疫反应的关键因素,这极大地提高了我们对于肠道微生物群在2型糖尿病及其并发症的发生进展中的认知 [34] 。目前在肠道微生物和机体间相互作用方面已经取得了重大突破,但我们对于肠道微生物是否在预防、发展和治疗2型糖尿病及其并发症方面的理解仍处于早期阶段,这需要通过进一步的研究来验证2型糖尿病及其并发症不同病程变化阶段肠道微生物群及其代谢产物的组成改变及其产生的一系列动态变化,以明确疾病进展过程中的动态演变。结合最新研究表明影响2型糖尿病及其并发症几个特征性参数的细菌种类已经逐步明确,但在针对肠道微生物群治疗2型糖尿病及其并发症的治疗应用方面的干预措施处于初始阶段,最有意义的是通过调节肠道微生物和添加益生菌来针对性治疗 [35] [36] 。因此应致力于鉴定细菌及其代谢物特性以早期明确疾病风险和机制,从而根据患者的需要、疾病的发生阶段及特殊情况来进行个性化干预治疗,以充分利用肠道微生物群的潜力,为2型糖尿病及其并发症的治疗提供新思路。

基金项目

课题名称:青海地区2型糖尿病合并肥胖患者肠道菌群特征及其与胰岛素抵抗间的关系;课题编号:2021-wizdx-22。

参考文献

NOTES

*通讯作者。

参考文献

[1] Matijašić, M., Meštrović, T., Čipčić Paljetak, H.C., et al. (2020) Gut Microbiota beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD. International Journal of Molecular Sciences, 21, Article No. 2668.
https://doi.org/10.3390/ijms21082668
[2] Jayasudha, R., Das, T., Kalyana, C.S., et al. (2020) Gut Mycobiomes Are Altered in People with Type 2 Diabetes Mellitus and Diabetic Retinopathy. PLOS ONE, 15, e243077.
https://doi.org/10.1371/journal.pone.0243077
[3] Mazloom, K., Siddiqi, I. and Covasa, M. (2019) Probiotics: How Effective Are They in the Fight against Obesity? Nutrients, 11, Article No. 258.
https://doi.org/10.3390/nu11020258
[4] Wang, C., Li, Q. and Ren, J. (2019) Microbiota-Immune Interaction in the Pathogenesis of Gut-Derived Infection. Frontiers in Immunology, 10, Article 1873.
https://doi.org/10.3389/fimmu.2019.01873
[5] Williams, R., Karuranga, S., Malanda, B., et al. (2020) Global and Regional Estimates and Projections of Diabetes-Related Health Expenditure: Results from the International Diabetes Fed-eration Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice, 162, Article ID: 108072.
https://doi.org/10.1016/j.diabres.2020.108072
[6] Silveira Rossi, J.L., Barbalho, S.M., de Araujo, R.R., et al. (2022) Metabolic Syndrome and Cardiovascular Diseases: Going beyond Traditional Risk Factors. Diabetes/Metabolism Research and Reviews, 38, e3502.
https://doi.org/10.1002/dmrr.3502
[7] Iatcu, C.O., Steen, A. and Covasa, M. (2021) Gut Microbiota and Compli-cations of Type-2 Diabetes. Nutrients, 14, Article No. 166.
https://doi.org/10.3390/nu14010166
[8] Lee, C.B., Chae, S.U., Jo, S.J., Jerng, U.M. and Bae, S.K. (2021) The Relationship between the Gut Microbiome and Metformin as a Key for Treating Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 22, Article No. 3566.
https://doi.org/10.3390/ijms22073566
[9] Chen, W., Zhang, M., Guo, Y, et al. (2021) The Profile and Function of Gut Microbiota in Diabetic Nephropathy. Diabetes, Metabolic Syndrome and Obesity, 14, 4283-4296.
https://doi.org/10.2147/DMSO.S320169
[10] Tian, R., Liu, H., Feng, S., et al. (2021) Gut Microbiota Dysbiosis in Stable Coronary Artery Disease Combined with Type 2 Diabetes Mellitus Influences Cardiovascular Prognosis. Nutrition, Metabolism and Cardiovascular Diseases, 31, 1454-1466.
https://doi.org/10.1016/j.numecd.2021.01.007
[11] Zhu, Q., Gao, R., Zhang, Y., et al. (2018) Dysbiosis Signatures of Gut Microbiota in Coronary Artery Disease. Physiological Genomics, 50, 893-903.
https://doi.org/10.1152/physiolgenomics.00070.2018
[12] Rodríguez-Morató, J. and Mat-than, N.R. (2020) Nutrition and Gastrointestinal Microbiota, Microbial-Derived Secondary Bile Acids, and Cardiovascu-lar Disease. Current Atherosclerosis Reports, 22, Article No. 47.
https://doi.org/10.1007/s11883-020-00863-7
[13] Kim, S.M. and Song, I.H. (2020) The Clinical Impact of Gut Microbiota in Chronic Kidney Disease. Korean Journal of Internal Medicine, 35, 1305-1316.
https://doi.org/10.3904/kjim.2020.411
[14] Rukavina Mikusic, N.L., Kouyoumdzian, N.M. and Choi, M.R. (2020) Gut Microbiota and Chronic Kidney Disease: Evidences and Mechanisms That Mediate a New Communication in the Gastrointestinal-Renal Axis. Pflügers Archiv, 472, 303-320.
https://doi.org/10.1007/s00424-020-02352-x
[15] Meijers, B., Evenepoel, P. and Anders, H.-J. (2019) Intestinal Microbiome and Fitness in Kidney Disease. Nature Reviews Nephrology, 15, 531-545.
https://doi.org/10.1038/s41581-019-0172-1
[16] Chung, S.Y., Barnes, J.L. and Astroth, K.S. (2019) Gastrointesti-nal Microbiota in Patients with Chronic Kidney Disease: A Systematic Review. Advances in Nutrition, 10, 888-901.
https://doi.org/10.1093/advances/nmz028
[17] Rodrigues, F.G., Ormanji, M.S., Heilberg, I.P., et al. (2021) Inter-play between Gut Microbiota, Bone Health and Vascular Calcification in Chronic Kidney Disease. European Journal of Clinical Investigation, 51, e13588.
https://doi.org/10.1111/eci.13588
[18] Wei, H., Wang, L., An, Z., et al. (2021) QiDiTangShen Granules Modulated the Gut Microbiome Composition and Improved Bile Acid Proles in a Mouse Model of Diabetic Nephropathy. Biomedi-cine & Pharmacotherapy, 133, Article ID: 111061.
https://doi.org/10.1016/j.biopha.2020.111061
[19] McFarlane, C., Krishnasamy, R., Stanton, T., et al. (2021) Synbiotics Easing Renal Failure by Improving Gut Microbiology II (SYNERGY II): A Feasibility Randomized Controlled Trial. Nutrients, 13, Article No. 4481.
https://doi.org/10.3390/nu13124481
[20] Zhou, H., Peng, C., Huang, D.-S., et al. (2020) microRNA Expression Profiling Based on Microarray Approach in Human Diabetic Retinopathy: A Systematic Review and Meta-Analysis. DNA and Cell Biology, 39, 441-450.
https://doi.org/10.1089/dna.2019.4942
[21] Cecilia, O.-M., Jose, A.-C., Jose, N.-P., et al. (2019) Oxidative Stress as the Main Target in Diabetic Retinopathy Pathophysiology. Journal of Diabetes Research, 2019, Article ID: 8562408.
https://doi.org/10.1155/2019/8562408
[22] Ozkan, J., Willcox, M., Wemheuer, B., et al. (2019) Biogeography of the Human Ocular Microbiota. The Ocular Surface, 17, 111-118.
https://doi.org/10.1016/j.jtos.2018.11.005
[23] Das, T., Jayasudha, R., Chakravarthy, S., et al. (2021) Alterations in the Gut Bacterial Microbiome in People with Type 2 Diabetes Mellitus and Diabetic Retinopathy. Scientific Reports, 11, Article No. 2738.
https://doi.org/10.1038/s41598-021-82538-0
[24] Verma, A., Xu, K., Du, T., et al. (2019) Expression of Human ACE2 in Lactobacillus and Beneficial Effects in Diabetic Retinopathy in Mice. Molecular Therapy—Methods & Clinical Development, 14, 161-170.
https://doi.org/10.1016/j.omtm.2019.06.007
[25] Lin, K., Fan, K., Mu, S. and Wang, S. (2022) Change in Cepha-locaudal Tumor Cavity Diameter after Transsphenoidal Surgery Is A Predictor of Diabetes Insipidus in Pituitary Adeno-ma. European Journal of Medical Research, 27, Article No. 72.
https://doi.org/10.1186/s40001-022-00700-4
[26] Garg, A., Chilakamarri, P. and Koo, B.B. (2021) Diagnostic and Treatment Considerations in Restless Legs Syndrome Complicated by Diabetic Neuropathy. Current Diabetes Reports, 21, Article No. 66.
https://doi.org/10.1007/s11892-021-01431-2
[27] Paul, S., Ali, A. and Katare, R. (2020) Molecular Complexities Underlying the Vascular Complications of Diabetes Mellitus—A Comprehensive Review. Journal of Diabetes and Its Complications, 34, Article ID: 107613.
https://doi.org/10.1016/j.jdiacomp.2020.107613
[28] Preguica, I., Alves, A., Nunes, S., et al. (2021) Diet-Induced Rodent Models of Diabetic Peripheral Neuropathy, Retinopathy and Nephropathy. Nutrients, 12, Article No. 250.
https://doi.org/10.3390/nu12010250
[29] Hicks, C.W. and Selvin, E. (2019) Epidemiology of Peripheral Neuropa-thy and Lower Extremity Disease in Diabetes. Current Diabetes Reports, 19, Article No. 86.
https://doi.org/10.1007/s11892-019-1212-8
[30] Pathak, R., Sachan, N. and Chandra, P. (2022) Mechanistic Ap-proach towards Diabetic Neuropathy Screening Techniques and Future Challenges: A Review. Biomedicine & Pharma-cotherapy, 150, Article ID: 113025.
https://doi.org/10.1016/j.biopha.2022.113025
[31] Rolim, L.C., da Silva, E.M., Flumignan, R.L., Abreu, M.M. and Dib, S.A. (2019) Acetyl-L-Carnitine for the Treatment of Diabetic Peripheral Neuropathy. Cochrane Database of Sys-tematic Reviews, 6, Article No. D11265.
https://doi.org/10.1002/14651858.CD011265.pub2
[32] Wang, Y., Ye, X., Ding, D. and Lu, Y. (2020) Character-istics of the Intestinal Flora in Patients with Peripheral Neuropathy Associated with Type 2 Diabetes. Journal of Interna-tional Medical Research, 48.
https://doi.org/10.1177/0300060520936806
[33] Zaharuddin, L., Mokhtar, N.M., Muhammad Nawawi, K.N. and Ali, R.A.R. (2019) A Randomized Double-Blind Placebo-Controlled Trial of Probiotics in Post-Surgical Colorectal Can-cer. BMC Gastroenterology, 19, Article No. 131.
https://doi.org/10.1186/s12876-019-1047-4
[34] Fang, Y., Zhang, C., Shi, H., et al. (2021) Characteristics of the Gut Microbiota and Metabolism in Patients with Latent Autoimmune Diabetes in Adults: A Case-Control Study. Diabe-tes Care, 44, 2738-2746.
https://doi.org/10.2337/dc20-2975
[35] Lee, Y.-S., Lee, D., Park, G.-S., et al. (2021) Lactobacillus plantarum HAC01 Ameliorates Type 2 Diabetes in High-Fat Diet and Streptozotocin-Induced Diabetic Mice in Association with Modulating the Gut Microbiota. Food & Function, 12, 6363-6373.
https://doi.org/10.1039/D1FO00698C
[36] Watanabe, A., Tochio, T., Kadota, Y., et al. (2021) Supplementation of 1-Kestose Modulates the Gut Microbiota Composition to Ameliorate Glucose Metabolism in Obesity-Prone Hosts. Nu-trients, 13, Article No. 2983.
https://doi.org/10.3390/nu13092983