三维柔性电化学传感器在细胞信号分子监测中的研究进展
Research Progress of Three Dimensional Flexible Electrochemical Sensors in Cell Signal Molecular Monitoring
摘要: 生物体通过释放各种信号分子来实现细胞间和细胞外信息传递,进而对机体的整体功能进行调节控制,信号分子在生物体中的异常表达会导致多种疾病,因此监测这些生物信号分子对人类健康研究极具意义。三维柔性电化学传感器具有良好的力学性能、灵敏度和稳定性等特性,可以模仿体内细胞的自然环境,实现三维细胞培养和监测。本文简要介绍了三维柔性电化学传感器在细胞生物信号分子监测中的发展和应用。
Abstract: Organisms transmit intercellular and extracellular information by releasing various signaling molecules, and then regulate and control the overall function of the body. The abnormal expres-sion of signaling molecules in organisms can lead to a variety of diseases, so monitoring these bio-logical signaling molecules is of great significance for human health research.3D flexible electro-chemical sensors have good mechanical properties, sensitivity and stability, which can imitate the natural environment of cells in vivo and realize 3D cell culture. This paper briefly introduces the development and application of 3D flexible electrochemical sensors in Monitoring of Biosignal Molecules.
文章引用:朱彩玲, 于春梅, 霍晓磊. 三维柔性电化学传感器在细胞信号分子监测中的研究进展[J]. 分析化学进展, 2022, 12(4): 327-333. https://doi.org/10.12677/AAC.2022.124039

1. 引言

生命体有许多生物信号小分子,它们可以携带各种生物信息,通过细胞间的信息传递来调节细胞的生长、分化、物质代谢等生命活动,这些信号分子的异常表达会导致疾病的发生。因此,对细胞释放的生物信号分子进行准确、实时和动态监测,对认识胞间信息交流机制、分析正常生理过程,以及揭示疾病的分子机制具有重要的意义 [1]。

传统的生物信号分子的检测方法包括酶联免疫吸附法 [2] [3]、化学发光法 [4] [5]、高效液相色谱法 [6] [7] [8] 和凝胶电泳法 [9] [10] 等,具有分析准确,选择性好等特点。但是这些方法也存在明显的缺陷,比如成本高、操作复杂、耗时费力且易受干扰等,另外由于生物信号分子释放的瞬时性,许多传统的检测方法不能满足实时监测信号转导的要求,且部分方法的灵敏度也有待提高,无法快速方便地检测出生物中的信号分子(见表1)。

Table 1. Comparison of several biological signal molecular detection methods

表1. 几种生物信号分子检测方法的比较

近年来,电化学方法发展迅速,柔性电化学传感器已被证明是获取生物体内信号分子丰富化学信息的强有力监测工具,其作为传感领域的重要组成部分正向可穿戴化、智能化以及便携化方向发展 [11] [12]。电化学传感技术因其特异性强、灵敏度高和选择性好等特点,使得上述问题均能被妥善解决 [13]。最为关键的,所制备的电化学生物传感器还具有无细胞毒性和良好的生物相容性 [14] [15]。生物体内的细胞存活在三维动态微环境中,由可溶性因子、细胞–基质相互作用、细胞–细胞接触和特定的物理化学特性组成,因此基于三维可拉伸支架的细胞培养可满足细胞粘附、增殖和细胞外基质的产生。基于可拉伸3D支架(例如水凝胶、泡沫镍和聚氨酯多孔支架等)制备的3D电化学传感器 [16],既可以模拟细胞培养的微环境 [17] [18],又可以电化学监测这些细胞在机械应力下的生物信号分子变化情况(包括拉伸、弯曲和压缩等)。通过荧光显微镜观察细胞的增殖、生长及细胞活力,结合免疫染色、蛋白质印迹和聚合酶链反应来验证结果。

2. 三维柔性电化学传感器的概述

电化学检测方法能够实时监测来自活细胞或组织的化学分子,具有响应速度快和灵敏度高的优点。最近,可拉伸的电化学传感器已经出现,并证明了在其表面上培养细胞以及实时诱导和监测细胞机械转导的巨大优势 [19] [20] [21] [22]。然而,大多数报道的可拉伸传感器多以二维(2D)平面形式工作,很少有基于柔性基底和导电聚合物的3D支架,因此在承受机械变形方面具有很大的差异。与典型的2D电极相比,3D细胞培养支架由于可以模拟生物体细胞的实际微环境,在一定程度上能再现细胞的生理状态,有利于提高细胞的生存、附着、繁殖和迁移能力,为病理模型的体外研究提供更准确的信息 [17] [23]。而且,3D电极具有多孔结构,可以促进营养物质的高效运输,有利于体内检测。到目前为止,在研究可拉伸3D电化学传感器的制造方面已经有了巨大的发展,该传感器适用于诱导细胞机械转导。对于3D细胞培养,除了支架提供的与体内环境相似的结构和物理线索外,机械应力对细胞功能(例如迁移,生长,分化和存活)的作用引起了越来越多的关注,特别是组织中的一些细胞,例如韧带,骨骼,心脏,肌肉等,这些细胞可以通过复杂的机械转导过程感知机械信号然后将其转化为生物分子信号 [24]。

3. 构建3D柔性电化学传感器的支架基底

3.1. 水凝胶

导电水凝胶作为柔性电子器件具有独特的吸引力,能满足机械柔性和智能传感的基本需求 [25]。它们是由亲水性聚合物组成的粘弹性材料,具有良好的导电性、优异的力学性能和优良的生物相容性 [26]。随着柔性、可穿戴和便携式设备的快速发展,柔性电子产品变得极具吸引力,它们可以监测人体运动和生命体征(例如压力与拉伸、惯性力、心率和温度等)。然而构建柔性传感器的关键是如何改进机械耐久性与扩展的工作条件,常规的导电材料(如碳基材料和金属材料)尽管表现出良好的导电性,但它们通常缺乏延展性和可恢复性,因此导电水凝胶的出现引起了许多研究者的关注。导电水凝胶用作柔性传感器时,它可以根据运动自由变形,具有优异的机械耐久性,并且在重复使用后能保持稳定。近年来,已经报道了许多基于Mxene的导电水凝胶,并显示出良好的信号检测能力。例如,Feng等人将导电材料Ti3AlC2前体加工成MXene纳米片,然后结合定向冷冻和溶剂置换方法制备具有有序内部取向结构的水凝胶,用于生物信号监测,这项工作将为探索用于柔性电子应用的生物启发的导电水凝胶打开一扇新的大门 [27]。

3.2. 聚氨酯海绵

聚氨酯海绵(PU)作为一种廉价的多孔材料,已广泛应用于人们的日常生活中。这种材料具有优良的三维网状结构,吸附能力强、质轻、弹性好、孔隙率高、内表面积大 [28]。除了上述特性外,海绵还有一个显著特点,即可以拉伸。在商业聚氨酯海绵上直接加载导电纳米材料可实现良好的导电性和机械稳定性,因此,选择聚氨酯多孔海绵作为柔性基底的传感器是实现弯曲和拉伸等多功能检测的理想选择。Ma等人通过简单的溶液浸涂组装(LBL)将MWCNTs和还原石墨烯(RGO)交替涂覆在PU海绵上,制备了导电PU海绵 [29]。Wen课题组通过自组装的简单超声波浸涂工艺成功地制造了涂有MXene和CNTs的可穿戴3D多孔PU海绵传感器 [30]。这两种由不同导电纳米材料修饰的PU海绵传感器都拥有优异的电响应、良好的稳定性、出色的可压缩性和高灵敏度,且均能检测人体的运动(包括手指弯曲、肘部弯曲和肌肉收缩等)以及发光二极管灯,这在人机交互、医疗保健和可穿戴设备等新兴应用中具有巨大潜力。

3.3. 泡沫镍

泡沫镍是一种具有三维多孔网络结构的新型功能材料,可用于在各种器件中存储能量,它们具有较大的表面积、密度小且导电性很强 [31]。Yang等人通过一步电沉积的方法在泡沫镍上直接生长出刺状Au纳米粒子,形成独特的三维结构。这种新型Au NTs/Ni泡沫电极具有良好的电化学性能,高催化活性和优越的稳定性 [32]。Pang使用镍泡沫作为模板,包裹PDMS,再采用化学蚀刻去除泡沫镍,最后涂覆石墨烯,构建了石墨烯多孔网络(GPN),该传感器具有高灵敏度,快速响应时间以及施加力和电阻变化之间的良好线性 [33]。总之,这种泡沫金属,由于其优异的孔隙结构、耐高温和导热透气性,在很多领域都能够见到泡沫镍的身影,它可以充当电池电极材料、各种催化剂载体,此外基于泡沫镍所制备的传感器同样适用于监测和识别人类生理活动。

4. 三维柔性电化学传感器在生物分子检测中的应用

4.1. 过氧化氢

过氧化氢(H2O2)是一种与人体代谢相关的重要生物标志物,它作为信使分子,通过细胞和组织扩散可引发细胞形状改变、细胞增殖和免疫细胞增殖等细胞效应,涉及多种退行性改变或氧化应激有关的疾病 [34]。当体内H2O2含量过高时,会导致细胞严重的损伤,破坏溶酶体薄膜、引起细胞死亡等。实时检测活细胞释放的H2O2,对深入了解疾病的病理过程至关重要 [35]。但H2O2在细胞微环境中存在扩散快、浓度低等特点,并且在实际检测中易受干扰。因此需要构建出具有良好生物相容性的生物分子检测平台,实现对活细胞释放H2O2的实时定量分析检测 [36]。Wu等人以生物相容性导电聚苯胺(PAni)水凝胶为基础,利用柔性碳布构建了用于活细胞电分析的柔性传感器。聚苯胺水凝胶的3D纳米结构介孔基体有利于催化纳米铂的原位生成和细胞生长,所制备的水凝胶电化学传感器具有较高的灵敏度和优异的选择性,在10 μm至10 mm的宽范围内存在线性关系,能够准确检测细胞释放的H2O2 [37]。

4.2. 一氧化氮

一氧化氮(Nitric oxide, NO)由人体各种细胞合成,是一种新型生物信使分子,可快速通过生物膜扩散,在心脑血管、神经、免疫调节等方面起着重要的生物学作用。高水平NO可造成细胞毒性与亚硝基应激,与脑缺血、脑部感染和神经退行性疾病的神经元死亡有关。NO在血管舒张、血压、神经通讯、免疫反应和生理过程等许多病理过程中发挥关键作用。在生物样本及临床研究中,对该分子功能的研究仍在继续。已经证实,呼吸系统疾病、心血管疾病、高血压、阴道炎症状、癌症都与NO浓度有关 [38]。但由于其半衰期短、浓度低,在生物样品中不易检测,另外,生物产生的NO与活性氧迅速反应,这使得NO的检测更加困难,因此有必要开发一种快速、灵敏的检测方法来测定生物体中的NO [39] 和H2O2 [40]。Qin等人开发了一种集成3D细胞培养,机械加载和电化学传感的可拉伸多功能平台,该支架首先从多孔镍泡沫中复制弹性3D多孔聚二甲基硅氧烷(PDMS)支架,然后将多肽连接的金纳米管(Au NTs)的网络附着在PDMS上而制成的,这种独特的支架,对其上的宿主细胞具有非常好的相容性,可重现的机械变形,同时保持稳定而灵敏的电化学响应,通过模拟软骨的3D结构,然后受到不同的应变以加载机械刺激,研究软骨细胞中信号分子一氧化氮(NO)的拉伸诱导产生 [41]。

4.3. 多巴胺

多巴胺(Dopamine, DA)被认为是大脑中关键的神经递质之一,与人类的许多疾病有关。DA水平异常可能导致帕金森病、精神分裂症等神经系统疾病。因此,准确、灵敏地测定DA的浓度受到了人们的广泛关注。在DA的电分析过程中,避免生物样品中共存的化合物的干扰至关重要,如抗坏血酸(AA)和尿酸(UA),它们的氧化电位与DA接近。为了解决这一问题,人们开发了导电聚合物纳米复合材料、金属氧化物纳米材料和碳材料等不同类型的修饰电极,以提高DA检测的选择性和灵敏度 [42] [43]。Peng等人以Ni泡沫作为3D模板,聚二甲基硅氧烷(PDMS)作为辅助支撑支架,以构建柔性Au泡沫支架,构建3D细胞培养集成电化学传感平台,该传感器在1.0 × 10−7~1.0 × 10−5 mol/L浓度范围内对多巴胺的电化学氧化呈线性响应,已成功实现大鼠脑中DA的实时监测 [44]。

5. 结论与展望

电化学传感是实现细胞和体内生物分子实时监测的最有效技术,这在生物、生化研究和生物医学应用中都具有重要意义。实际上,活细胞暴露于各种机械力下,会影响生物分子的释放,并在细胞和生理水平上产生影响。然而,传统的刚性电极在机械转导过程中无法适应细胞变形,因此难以获得重要的生化信息。柔性可拉伸的电化学传感器是一种强大的手段,可以为机械力提供理想的柔性基底,以检测机械刺激下细胞生理过程的瞬时变化 [45]。而3D支架进一步模拟机体内环境,促进营养物质的高效运输,使其更适合模拟体内检测。3D细胞培养系统的出现很大程度上推动了组织再生、病理生理学研究和药物筛选等许多领域的发展。但三维柔性电化学传感器对材料的导电性和电化学惰性要求高,加上生物样本中信号分子含量低且干扰成分复杂,因此,构建稳定的三维柔性电极仍存在重大挑战。总而言之,三维柔性电化学传感器发展迅速,尽管存在各种挑战,但我们坚信在不久的未来,三维柔性电化学传感器会得到更好的发展和应用。

NOTES

*通讯作者。

参考文献

[1] Basudhar, D., Ridnour, L.A., Cheng, R., Kesarwala, A.H., Heinecke, J. and Wink, D.A. (2016) Biological Signaling by Small Inorganic Molecules. Coordination Chemistry Reviews, 306, 708-723.
https://doi.org/10.1016/j.ccr.2015.06.001
[2] Gao, Y., Zhou, Y. and Chandrawati, R. (2019) Metal and Metal Oxide Nanoparticles to Enhance the Performance of Enzyme-Linked Immunosorbent Assay (ELISA). ACS Applied Nano Materials, 3, 1-21.
https://doi.org/10.1021/acsanm.9b02003
[3] Liang, J., Liu, H., Huang, C., et al. (2015) Aggregated Silver Nanoparticles Based Surface-Enhanced Raman Scattering Enzyme-Linked Immunosorbent Assay for Ultrasensitive Detection of Protein Biomarkers and Small Molecules. Analytical Chemistry, 87, 5790-5796.
https://doi.org/10.1021/acs.analchem.5b01011
[4] Zhen, Z., Liu, J.W., Wen, Q., Wu, Z. and Jiang, J.H. (2020) Homogeneous Label-Free Protein Binding Assay Using Small-Molecule-Labeled DNA Nanomachine with DNAzyme-Based Chemiluminescence Detection. Talanta, 206, Article ID: 120175.
https://doi.org/10.1016/j.talanta.2019.120175
[5] Gnaim, S. and Shabat, D. (2019) Activity-Based Optical Sensing Enabled by Self-Immolative Scaffolds: Monitoring of Release Events by Fluorescence or Chemilumines-cence Output. Accounts of Chemical Research, 52, 2806-2817.
https://doi.org/10.1021/acs.accounts.9b00338
[6] Dal Bello, F., Zorzi, M., Aigotti, R., et al. (2021) Targeted and Untargeted Quantification of Quorum Sensing Signalling Molecules in Bacterial Cultures and Biological Samples via HPLC-TQ MS Techniques. Analytical and Bioanalytical Chemistry, 413, 853-864.
https://doi.org/10.1007/s00216-020-03040-6
[7] Klencsár, B., Li, S., Balcaen, L. and Vanhaecke, F. (2018) High-Performance Liquid Chromatography Coupled to Inductively Coupled Plasma—Mass Spectrometry (HPLC-ICP-MS) for Quantitative Metabolite Profiling of Non-Metal Drugs. TrAC Trends in Analytical Chemistry, 104, 118-134.
https://doi.org/10.1016/j.trac.2017.09.020
[8] Menegollo, M., Tessari, I., Bubacco, L. and Szabadkai, G. (2019) Determination of ATP, ADP, and AMP Levels by Reversed-Phase High-Performance Liquid Chromatography in Cultured Cells. Methods in Molecular Biology, 1925, 223-232.
https://doi.org/10.1007/978-1-4939-9018-4_19
[9] Lopez-Valladares, G., Danielsson-Tham, M.L., Goering, R.V. and Tham, W. (2017) Lineage II (Serovar 1/2a and 1/2c) Human Listeria monocytogenes Pulsed-Field Gel Electrophoresis Types Divided into PFGE Groups Using the Band Patterns Below 145.5 kb. Foodborne Pathogens and Disease, 14, 8-16.
https://doi.org/10.1089/fpd.2016.2173
[10] Lopez-Canovas, L., Martinez Benitez, M.B., Herrera Isidron, J.A. and Flores Soto, E. (2019) Pulsed Field Gel Electrophoresis: Past, Present, and Future. Ana-lytical Biochemistry, 573, 17-29.
https://doi.org/10.1016/j.ab.2019.02.020
[11] Zhai, Q. and Cheng, W. (2019) Soft and Stretchable Electrochemical Biosensors. Materials Today Nano, 7, Article ID: 100041.
https://doi.org/10.1016/j.mtnano.2019.100041
[12] Xu, J., Fang, Y. and Chen, J. (2021) Wearable Biosensors for Non-Invasive Sweat Diagnostics. Biosensors (Basel), 11, Article No. 245.
https://doi.org/10.3390/bios11080245
[13] Li, D., Wu, C., Tang, X., Zhang, Y. and Wang, T. (2021) Elec-trochemical Sensors Applied for in Vitro Diagnosis. Chemical Research in Chinese Universities, 37, 803-822.
https://doi.org/10.1007/s40242-021-0387-0
[14] Manickam, P., Vashist, A., Madhu, S., et al. (2020) Gold Nanocubes Embedded Biocompatible Hybrid Hydrogels for Electrochemical Detection of H2O2. Bioelectrochemistry, 131, Article ID: 107373.
https://doi.org/10.1016/j.bioelechem.2019.107373
[15] Wang, Y., Li, Y., Zhuang, X., et al. (2021) Ru(bpy)3(2+) Encapsulated Cyclodextrin Based Metal Organic Framework with Improved Biocompatibility for Sensitive Electrochemiluminescence Detection of CYFRA21-1 in Cell. Biosensors and Bioelectronics, 190, Article ID: 113371.
https://doi.org/10.1016/j.bios.2021.113371
[16] Zhu, X., Xuan, L., Gong, J., et al. (2022) Three-Dimensional Macroscopic Graphene Supported Vertically-Ordered Mesoporous Silica-Nanochannel Film for Direct and Ultrasensitive Detection of Uric Acid in Serum. Talanta, 238, Article ID: 123027.
https://doi.org/10.1016/j.talanta.2021.123027
[17] Zhang, H.-W., Hu, X.-B., Qin, Y., et al. (2019) Conductive Polymer Coated Scaffold to Integrate 3D Cell Culture with Electrochemical Sensing. Analytical Chemistry, 91, 4838-4844.
https://doi.org/10.1021/acs.analchem.9b00478
[18] Liu, M.M., Liu, H., Li, S.H., et al. (2021) In-tegrated Paper-Based 3D Platform for Long-Term Cell Culture and in Situ Cell Viability Monitoring of Alzheimer’s Disease Cell Model. Talanta, 223, Article ID: 121738.
https://doi.org/10.1016/j.talanta.2020.121738
[19] Liu, Y.L., Qin, Y., Jin, Z.H., et al. (2017) A Stretchable Electrochemical Sensor for Inducing and Monitoring Cell Mechanotransduction in Real Time. Angewandte Chemie International Edition in English, 56, 9454-9458.
https://doi.org/10.1002/anie.201705215
[20] Li, J., Su, M., Jiang, M., et al. (2022) Stretchable Conductive Film Based on Silver Nanowires and Carbon Nanotubes for Real-Time Inducing and Monitoring of Cell-Released NO. Sensors and Actuators B—Chemical, 366, Article ID: 131983.
https://doi.org/10.1016/j.snb.2022.131983
[21] Fan, W.T., Qin, Y., Hu, X.B., et al. (2020) Stretchable Elec-trode Based on Au@Pt Nanotube Networks for Real-Time Monitoring of ROS Signaling in Endothelial Mecha-notransduction. Analytical Chemistry, 92, 15639-15646.
https://doi.org/10.1021/acs.analchem.0c04015
[22] Ling, Y., Lyu, Q., Zhai, Q., et al. (2020) Design of Stretchable Holey Gold Biosensing Electrode for Real-Time Cell Monitoring. ACS Sensors, 5, 3165-3171.
https://doi.org/10.1021/acssensors.0c01297
[23] Fedi, A., Vitale, C., Giannoni, P., Caluori, G. and Marrella, A. (2022) Biosensors to Monitor Cell Activity in 3D Hydrogel-Based Tissue Models. Sensors (Basel), 22, Article No. 1517.
https://doi.org/10.3390/s22041517
[24] Caviglia, C., Carletto, R.P., De Roni, S., et al. (2020) In Situ Electrochemical Analysis of Alkaline Phosphatase Activity in 3D Cell Cultures. Electrochimica Acta, 359, Article ID: 136951.
https://doi.org/10.1016/j.electacta.2020.136951
[25] Chu, X., Huang, H., Zhang, H., et al. (2019) Electrochemically Building Three-Dimensional Supramolecular Polymer Hydrogel for Flexible Solid-State Mi-cro-Supercapacitors. Electrochimica Acta, 301, 136-144.
https://doi.org/10.1016/j.electacta.2019.01.165
[26] Gao, F., Teng, H., Song, J., Xu, G. and Luo, X. (2020) A Flexible and Highly Sensitive Nitrite Sensor Enabled by Interconnected 3D Porous Polyaniline/Carbon Nanotube Conductive Hydrogels. Analytical Methods, 12, 604-610.
https://doi.org/10.1039/C9AY02442E
[27] Feng, Y., Liu, H., Zhu, W., et al. (2021) Muscle-Inspired MXene Conductive Hydrogels with Anisotropy and Low-Temperature Tolerance for Wearable Flexible Sensors and Arrays. Advanced Functional Materials, 31, Article ID: 2105264.
https://doi.org/10.1002/adfm.202105264
[28] Guo, S., Zhang, C., Yang, M., et al. (2020) A Facile and Sensitive Electrochemical Sensor for Non-Enzymatic Glucose De-tection Based on Three-Dimensional Flexible Polyurethane Sponge Decorated with Nickel Hydroxide. Analytica Chimica Acta, 1109, 130-139.
https://doi.org/10.1016/j.aca.2020.02.037
[29] Ma, Z., Wei, A., Ma, J., et al. (2018) Lightweight, Compressible and Electrically Conductive Polyurethane Sponges Coated with Synergistic Multiwalled Carbon Nanotubes and Graphene for Piezoresistive Sensors. Nanoscale, 10, 7116-7126.
https://doi.org/10.1039/C8NR00004B
[30] Wen, L., Nie, M., Wang, C., et al. (2021) Multifunctional, Light-Weight Wearable Sensor Based on 3D Porous Polyurethane Sponge Coated with MXene and Carbon Nano-tubes Composites. Advanced Materials Interfaces, 9, Article ID: 2270027.
https://doi.org/10.1002/admi.202101592
[31] Zhang, J., Sun, Y., Li, X. and Xu, J. (2019) Fabrication of Porous NiMn2O4 Nanosheet Arrays on Nickel Foam as an Advanced Sensor Material for Non-Enzymatic Glucose Detection. Scientific Reports, 9, Article No. 18121.
https://doi.org/10.1038/s41598-019-54746-2
[32] Yang, F., Cheng, K., Ye, K., et al. (2014) High Performance of Au Nanothorns Supported on Ni Foam Substrate as the Catalyst for NaBH4 Electrooxidation. Electrochimica Acta, 115, 311-316.
https://doi.org/10.1016/j.electacta.2013.10.110
[33] Pang, Y., Tian, H., Tao, L., et al. (2016) Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure. ACS Applied Mate-rials & Interfaces, 8, 26458-26462.
https://doi.org/10.1021/acsami.6b08172
[34] Deng, Z., Zhao, L., Zhou, H., Xu, X. and Zheng, W. (2022) Recent Advances in Electrochemical Analysis of Hydrogen Peroxide towards in Vivo Detection. Process Biochemistry, 115, 57-69.
https://doi.org/10.1016/j.procbio.2022.01.025
[35] Hu, J., Zhang, C., Li, X. and Du, X. (2020) An Electro-chemical Sensor Based on Chalcogenide Molybdenum Disulfide-Gold-Silver Nanocomposite for Detection of Hy-drogen Peroxide Released by Cancer Cells. Sensors (Basel), 20, Article No. 6817.
https://doi.org/10.3390/s20236817
[36] Fu, Y., Huang, D., Li, C., Zou, L. and Ye, B. (2018) Graphene Blended with SnO2 and Pd-Pt Nanocages for Sensitive Non-Enzymatic Electrochemical Detection of H2O2 Released from Living Cells. Analytica Chimica Acta, 1014, 10-18.
https://doi.org/10.1016/j.aca.2018.01.067
[37] Wu, R., Li, L., Pan, L., et al. (2021) Long-Term Cell Culture and Electrically in Situ Monitoring of Living Cells Based on a Polyaniline Hydrogel Sensor. Journal of Materials Chemistry B, 9, 9514-9523.
https://doi.org/10.1039/D1TB01885J
[38] Brown, M.D. and Schoenfisch, M.H. (2019) Electrochemical Nitric Oxide Sensors: Principles of Design and Characterization. Chemical Reviews, 119, 11551-11575.
https://doi.org/10.1021/acs.chemrev.8b00797
[39] Zhao, X., Wang, K., Li, B., et al. (2018) Fabrication of a Flexible and Stretchable Nanostructured Gold Electrode Using a Facile Ultraviolet-Irradiation Approach for the Detection of Nitric Oxide Released from Cells. Analytical Chemistry, 90, 7158-7163.
https://doi.org/10.1021/acs.analchem.8b01088
[40] Wang, Y.W., Liu, Y.L., Xu, J.Q., Qin, Y. and Huang, W.H. (2018) Stretchable and Photocatalytically Renewable Electrochemical Sensor Based on Sandwich Nanonetworks for Real-Time Monitoring of Cells. Analytical Chemistry, 90, 5977-5981.
https://doi.org/10.1021/acs.analchem.8b01396
[41] Qin, Y., Hu, X.B., Fan, W.T., et al. (2021) A Stretchable Scaffold with Electrochemical Sensing for 3D Culture, Mechanical Loading, and Real-Time Monitoring of Cells. Advanced Science (Weinh), 8, e2003738.
https://doi.org/10.1002/advs.202003738
[42] Shu, Y., Lu, Q., Yuan, F., et al. (2020) Stretchable Electro-chemical Biosensing Platform Based on Ni-MOF Composite/Au Nanoparticle-Coated Carbon Nanotubes for Re-al-Time Monitoring of Dopamine Released from Living Cells. ACS Applied Materials & Interfaces, 12, 49480-49488.
https://doi.org/10.1021/acsami.0c16060
[43] Li, X., Lu, X. and Kan, X. (2017) 3D Electrochemical Sensor Based on Poly(hydroquinone)/Gold Nanoparticles/Nickel Foam for Dopamine Sensitive Detection. Journal of Elec-troanalytical Chemistry, 799, 451-458.
https://doi.org/10.1016/j.jelechem.2017.06.047
[44] Peng, M., Wang, J., Li, Z., et al. (2022) Three-Dimensional Flexible and Stretchable Gold Foam Scaffold for Real-Time Electrochemical Sensing in Cells and in Vivo. Talanta, 253, Article ID: 123891.
https://doi.org/10.1016/j.talanta.2022.123891
[45] Liu, Y.L. and Huang, W.H. (2021) Stretchable Electro-chemical Sensors for Cell and Tissue Detection. Angewandte Chemie International Edition in English, 60, 2757-2767.
https://doi.org/10.1002/anie.202007754