留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陆相页岩气储层裂缝支撑剂铺置规律研究

马春晓 邢云 罗攀 高志亮 张锋三 程鑫 吴金桥

马春晓,邢云,罗攀,等. 陆相页岩气储层裂缝支撑剂铺置规律研究[J]. 钻井液与完井液,2022,39(3):373-382 doi: 10.12358/j.issn.1001-5620.2022.03.017
引用本文: 马春晓,邢云,罗攀,等. 陆相页岩气储层裂缝支撑剂铺置规律研究[J]. 钻井液与完井液,2022,39(3):373-382 doi: 10.12358/j.issn.1001-5620.2022.03.017
MA Chunxiao, XING Yun, LUO Pan, et al.Research on proppant migration law of fractures in ccontinental shale ggas rreservoir[J]. Drilling Fluid & Completion Fluid,2022, 39(3):373-382 doi: 10.12358/j.issn.1001-5620.2022.03.017
Citation: MA Chunxiao, XING Yun, LUO Pan, et al.Research on proppant migration law of fractures in ccontinental shale ggas rreservoir[J]. Drilling Fluid & Completion Fluid,2022, 39(3):373-382 doi: 10.12358/j.issn.1001-5620.2022.03.017

陆相页岩气储层裂缝支撑剂铺置规律研究

doi: 10.12358/j.issn.1001-5620.2022.03.017
基金项目: 国家科技重大专项课题四“非均质陆相页岩气储层改造配套工艺技术”(2017ZX05039-004),陕西省创新能力支撑计划“疏水缔合型低分子清洁压裂液的研发及其摩阻、悬砂性能研究”(2019KJXX-024)
详细信息
    作者简介:

    马春晓,工程师,1988年生,西北大学博士研究生,现在主要从事油气田储层改造技术研究。电话 18629250319;E-mail:machunxiao_2009@163.com

    通讯作者:

    高志亮,高级工程师,毕业于西北工业大学高分子材料专业,现在主要从事油气田储层改造技术研究和压裂液研究。E-mail:150062439@qq.com

  • 中图分类号: TE357.12

Research on Proppant Migration Law of Fractures in Ccontinental Shale Ggas Rreservoir

  • 摘要: 为了认识陆相页岩气储层裂缝中支撑剂的铺置规律,采用可视裂缝模拟系统开展支撑剂沉降铺置实验,模拟了不同压裂液黏度、排量、砂比、支撑剂粒径和支撑剂密度条件下支撑剂运移沉降的过程,同时采用PIV粒子测速技术绘制了砂堤入口处与前缘处的速度场,进一步分析了支撑剂铺置过程中颗粒的运动特征。研究结果表明,支撑剂在人工裂缝中的铺置分为四个阶段:早期阶段、中前期阶段、中后期阶段和平衡状态阶段。裂缝入口处:悬浮颗粒的速度方向近似水平向前,砂堤表面颗粒速度沿着坡面向上,支撑剂的推进主要依靠液体黏滞力的携带作用;排量增大,流场出现明显的扰动现象,排量越大,扰动程度越大。砂堤前缘处:坡顶处流场存在明显的涡流现象;液体黏度增加,涡流强度减弱,黏滞力增加,颗粒在液体冲击和携带作用下,铺置更远的距离;排量增加,整个前缘区域出现更大的旋涡,涡流作用更加强烈,此时液体的冲击作用使得支撑剂铺置效果更好;砂比增加,旋涡数量增加,强度增强,波及范围增大,支撑剂运移到裂缝更远端。滑溜水中支撑剂粒径越小、密度越大,砂堤越均匀,但要达到铺置效果,需要携砂液的作用。

     

  • 图  1  实验装置原理图

    图  2  可视裂缝平板装置

    图  3  排量为1.55 m3/h时滑溜水在不同时刻的砂堤形态图

    图  4  排量为1.55 m3/h时线性胶在不同时刻砂堤形态图

    图  5  排量为1.55 m3/h时携砂液在不同时刻的砂堤形态图

    图  6  滑溜水中裂缝入口及砂堤前缘处速度场分布图

    图  7  线性胶中裂缝入口及砂堤前缘处速度场分布图

    图  8  携砂液中裂缝入口及砂堤前缘处速度场分布图

    图  9  不同黏度下砂堤平衡形态图

    图  10  排量2.15 m3/h时滑溜水的砂堤形态图

    图  11  排量2.85 m3/h时滑溜水的砂堤形态图

    图  12  排量2.15 m3/h时裂缝入口及 砂堤前缘处速度场分布图

    图  13  排量2.85 m3/h时裂缝入口及 砂堤前缘处速度场分布图

    图  14  不同排量下砂堤平衡状态时形态图

    图  15  砂堤平衡高度随排量的变化图

    图  16  不同砂比条件下砂堤前缘速度分布图

    图  17  不同砂比对应砂堤平衡形态图(滑溜水)

    图  18  砂堤高度随砂比变化图

    图  19  砂堤平衡时间随砂比变化图

    图  20  不同粒径平衡状态时砂堤形态对比图(滑溜水)

    图  21  不同密度情况下砂堤形态对比图

    图  22  砂堤长度和高度随支撑剂密度的变化图

    表  1  3种不同压裂液的实验方案

    压裂液类型支撑剂粒径/目砂比/%
    排量/(m3·h-1
    线性胶 20~40 10 1.55
    携砂液 1.55
    滑溜水 1.55
    滑溜水 2.15
    滑溜水 2.85
    下载: 导出CSV

    表  2  不同砂比下实验方案

    压裂液类型支撑剂粒径/目砂比/%排量/(m3·h−1
    滑溜水40~7051.55
    10
    15
    20
    25
    下载: 导出CSV

    表  3  不同粒径下实验方案

    压裂液类型支撑剂粒径/目砂比/%排量/(m3·h−1
    滑溜水20~40101.55
    30~50
    40~70
    70~140
    下载: 导出CSV

    表  4  不同密度支撑剂的实验方案

    压裂液
    类型
    支撑剂
    材料
    ρ支撑剂/
    g·cm−3
    支撑剂
    粒径/目
    砂比/
    %
    排量/
    m3·h−1
    滑溜水聚合物0.7520~40101.25
    陶粒Ⅰ1.57
    石英砂1.72
    陶粒Ⅱ1.80
    下载: 导出CSV
  • [1] 邹才能,潘松圻,荆振华,等. 页岩油气革命及影响[J]. 石油学报,2020,41(1):1-12. doi: 10.1038/s41401-019-0299-4

    ZOU Caineng, PAN Songqi, JIN Zhenghua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1):1-12. doi: 10.1038/s41401-019-0299-4
    [2] 宋岩,高凤琳,唐相路,等. 海相与陆相页岩储层孔隙结构差异的影响因素[J]. 石油学报,2020,41(12):1501-1512. doi: 10.7623/syxb202012005

    SONG Yan, GAO Fenglin, TANG Xianglu, et al. Influencing factors of pore structure differences between marine and terrestrial shale reservoirs[J]. Acta Petrolei Sinica, 2020, 41(12):1501-1512. doi: 10.7623/syxb202012005
    [3] 唐颖,张金川,张琴,等. 页岩气井水力压裂技术及其应用分析[J]. 天然气工业,2010,30(10):33-38+117. doi: 10.3787/j.issn.1000-0976.2010.10.008

    TANG Ying, ZHANG Jinchuan, ZHANG Qin, et al. An analysis of fracturing technology in shale gas wells and its application[J]. Natural Gas Industry, 2010, 30(10):33-38+117. doi: 10.3787/j.issn.1000-0976.2010.10.008
    [4] 郑有成,范宇,雍锐,等. 页岩气密切割分段+高强度加砂压裂新工艺[J]. 天然气工业,2019,39(10):76-81. doi: 10.3787/j.issn.1000-0976.2019.10.009

    ZHENG Youcheng, FAN Yu, YONG Rui, et al. A new fracturing technology of intensive stage +high-intensive proppant injection for shale gas reservoirs[J]. Natural Gas Industry, 2019, 39(10):76-81. doi: 10.3787/j.issn.1000-0976.2019.10.009
    [5] 潘林华,王海波,贺甲元,等. 水力压裂支撑剂运移与展布模拟研究进展[J]. 天然气工业,2020,40(10):54-65. doi: 10.3787/j.issn.1000-0976.2020.10.007

    PAN Linhua, WANG Haibo, HE Jiayuan, et al. Progress of simulation study on the migration and distribution of proppants in hydraulic fractures[J]. Natural Gas Industry, 2020, 40(10):54-65. doi: 10.3787/j.issn.1000-0976.2020.10.007
    [6] ZHANG Zhaopeng, ZHANG Shicheng, MA Xinfang, et al. Experimental and numerical study on proppant transport in a complex fracture system[J]. Energies, 2020, 13(23):6290.
    [7] GUO Jianchun, YANG Ruoyu, ZHANG Tao, et al. Experimental and numerical investigations of proppant pack effect on fracture conductivity of channel fracturing[J]. Energy Science & Engineering, 2020, 8(11):3995-4013.
    [8] 徐保蕊,蒋明虎,赵立新,等. 螺旋分离器水流动特性的CFD模拟与PIV试验[J]. 石油学报,2018,39(2):223-231.

    XU Baorui, JIANG Minghu, ZHAO Lixin, et al. CFD simulation and PIV test of water flow characteristics in helix separator[J]. Acta Petrolei Sinica, 2018, 39(2):223-231.
    [9] PAN Linhua ,ZHANG Ye ,CHENG Lijun , et al. Migration and distribution of complex fracture proppant in shale reservoir volume fracturing[J]. Natural Gas Industry B, 2018, 5(6):606-615.
    [10] LI Peng, ZHANG Xuhui, LU Xiaobing, et al. Experimental study on the self-suspending proppant-laden flow in a single fracture[J]. REM - International Engineering Journal, 2018, 71(2):191-196.
    [11] HUANG Hai , Tayfun Babadagli,LI Huazhou , et al. A visual experimental study on proppants transport in rough vertical fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2020:134:104446.
    [12] 刘俊辰,彭欢,高新平,等. 体积压裂支撑剂缝内沉降规律实验研究[J]. 钻采工艺,2019,42(05):39-42. doi: 10.3969/J.ISSN.1006-768X.2019.05.11

    LIU Junchen, PENG Huan, GAO Xinping, et al. Experimental study on proppant settlement regularity in fractures during volume fracturing[J]. Drilling & Production Technology, 2019, 42(05):39-42. doi: 10.3969/J.ISSN.1006-768X.2019.05.11
    [13] 沈骋,郭兴午,陈马林,等. 深层页岩气水平井储层压裂改造技术[J]. 天然气工业,2019,39(10):68-75. doi: 10.3787/j.issn.1000-0976.2019.10.008

    SHEN Cheng, GUO Xingwu, CHEN Malin, et al. Horizontal well fracturing stimulation technology for deep shale gas reservoirs[J]. Natural Gas Industry, 2019, 39(10):68-75. doi: 10.3787/j.issn.1000-0976.2019.10.008
    [14] 刘建坤,吴峙颖,吴春方,等. 压裂液悬砂及支撑剂沉降机理实验研究[J]. 钻井液与完井液,2019,36(03):378-383. doi: 10.3969/j.issn.1001-5620.2019.03.020

    LIU Jiankun, WU Zhiying, WU Chunfang, et al. Experimental study on the mechanism of sand suspension and settling of proppant in fracturing fluids[J]. Drilling Fluid & Completion Fliud, 2019, 36(03):378-383. doi: 10.3969/j.issn.1001-5620.2019.03.020
    [15] ALOTAIBI M A, MISKIMINS J L . Slickwater proppant transport in complex fractures: new experimental findings & scalable correlation[C] SPE Annual Technical Conference and Exhibition, 2015.
    [16] 田雨. 组合裂缝中支撑剂运移铺置规律研究[D]. 中国石油大学(华东), 2018.

    TIAN Yu. Study on the migration and placement of proppant in combined fractures[D]. China University of Petroleum (East China), 2018.
    [17] 战永平,温庆志,段晓飞. 压裂支撑剂运移和铺置虚拟仿真装置的应用[J]. 实验室研究与探索,2016,35(6):74-76+82. doi: 10.3969/j.issn.1006-7167.2016.06.018

    ZHAN Yongping, WEN Qingzhi, DUAN Xiaofei. An application of the visual simulation experimental device of proppant transportation and placement in the fracture[J]. Research and exploration in laboratory, 2016, 35(6):74-76+82. doi: 10.3969/j.issn.1006-7167.2016.06.018
    [18] BAIDURJA RAY, CHRIS LEWIS, VLADIMIR MARTYSEVICH, et al. An Investigation into Proppant Dynamics in Hydraulic Fracturing[C] SPE Hydraulic Fracturing Technology Conference and Exhibition, 2017.
    [19] WANG Hanyi , SHARMA M M. Modeling of hydraulic fracture closure on proppants with proppant settling[J]. Journal of Petroleum Science and Engineering, 2018, 171:636-645.
    [20] HAN J C. Turbine blade cooling studies at texas A&M university: 1980-2004[J]. Journal of thermophysics and heat transfer, 2006, 20(2):161-187.
    [21] 李鹏,苏建政,张岩,等. 单裂缝中携砂液流动规律研究[J]. 力学与实践,2017,39(2):135-144.

    LI Peng, SU Jianzheng, ZHANG Yan, et al. The two phase flow of proppant-laden fluid in a single fractuer[J]. Mechanics in engineering, 2017, 39(2):135-144.
    [22] LU Cong, MA Li , LI Zhili,et al. A novel hydraulic fracturing method based on the coupled CFD-DEM numerical simulation study[J]. Applied Sciences, 2020, 10(9):3027.
    [23] 杨思齐,樊建春,张来斌. 高压弯管压裂液两相流模拟及流固耦合分析[J]. 石油机械,2020,48(3):128-133.

    YANG Siqi, FAN Jianchun, ZHANG Laibin. Numerical simulation of two-phase flow and analysis of fluid-structure interaction of fracturing fluid in high pressure elbow.[J]. China Petroleum Machinery, 2020, 48(3):128-133.
    [24] 侯磊,Derek Elsworth,孙宝江,等. 页岩支撑裂缝中渗透率变化规律实验研究[J]. 西南石油大学学报(自然科学版),2015,37(3):31-37.

    HOU Lei, DEREK Elsworth, SUN Baojiang, et al. Experimental study on permeability evolution in propped shale fracture[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2015, 37(3):31-37.
    [25] 张磊,刘安邦,钟亚军,等. 大规模滑溜水压裂参数优化研究与应用[J]. 非常规油气,2022,9(2):112-118.

    ZHANG Lei, LIU Anbang, ZHONG Yajun, et al. Research and application of parameter optimization for large-scale slick water fracturing[J]. Unconventional Oil & Gas, 2022, 9(2):112-118.
    [26] 袁海平,池晓明,陈飞,等. 纤维携砂压裂技术在鄂尔多斯盆地子洲气田盒8上的应用[J]. 非常规油气,2017,4(4):97-101+46. doi: 10.3969/j.issn.2095-8471.2017.04.016

    YUAN Haiping, CHI Xiaoming, CHEN Fei, et al. The Application of Fiber-assisted Transport Technique in He-8upper Member of Zizhou Gas Field[J]. Unconventional Oil & Gas, 2017, 4(4):97-101+46. doi: 10.3969/j.issn.2095-8471.2017.04.016
    [27] 袁海平,池晓明,陈飞,等. 纤维携砂压裂技术在鄂尔多斯盆地子洲气田盒8上的应用[J]. 非常规油气,2017,4(4):97-101+46.

    YUAN Haiping, CHI Xiaoming, CHEN Fei, et al. The Application of Fiber-assisted Transport Technique in He-8upper Member of Zizhou Gas Field[J]. Unconventional Oil & Gas, 2017, 4(4):97-101+46.
  • 加载中
图(22) / 表(4)
计量
  • 文章访问数:  519
  • HTML全文浏览量:  204
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-20
  • 修回日期:  2022-03-01
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回