Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T01:38:50.522Z Has data issue: false hasContentIssue false

Generic formal fibers and analytically ramified stable rings

Published online by Cambridge University Press:  11 January 2016

Bruce Olberding*
Affiliation:
Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003-8001, USA, olberdin@nmsu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let A be a local Noetherian domain of Krull dimension d. Heinzer, Rotthaus, and Sally have shown that if the generic formal fiber of A has dimension d – 1, then A is birationally dominated by a 1-dimensional analytically ramified local Noetherian ring having residue field finite over the residue field of A. We explore further this correspondence between prime ideals in the generic formal fiber and 1-dimensional analytically ramified local rings. Our main focus is on the case where the analytically ramified local rings are stable, and we show that in this case the embedding dimension of the stable ring reflects the embedding dimension of a prime ideal maximal in the generic formal fiber, thus providing a measure of how far the generic formal fiber deviates from regularity. A number of characterizations of analytically ramified local stable domains are also given.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2013

References

[1] Akizuki, Y., Einige Bemerkungen über primäre Integritätsbereiche mit Teilerkettensatz, Proc. Phys. Math. Soc. Japan 17 (1935), 327336.Google Scholar
[2] Bass, H., On the ubiquity of Gorenstein rings, Math Z. 82 (1963), 828. MR 0153708.CrossRefGoogle Scholar
[3] Drozd, J. A. and Kiričenko, V. V., The quasi-Bass orders (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 6 (1972), 328370; English translation in Math. USSR-Izv. 6 (1972), 323365. MR 0304411.Google Scholar
[4] El Baghdadi, S. and Gabelli, S., Ring-theoretic properties of PvMDs, Comm. Algebra 35 (2007), 16071625. MR 2317633. DOI 10.1080/00927870601169283.CrossRefGoogle Scholar
[5] Fuchs, L. and Salce, L., Modules over non-Noetherian Domains, Math. Surveys Monogr. 84, Amer. Math. Soc., Providence, 2001. MR 1794715.Google Scholar
[6] Gabelli, S. and Picozza, G., Star stable domains, J. Pure Appl. Algebra 208 (2007), 853866. MR 2283430. DOI 10.1016/j.jpaa.2006.03.020.Google Scholar
[7] Heinzer, W., Lantz, D., and Shah, K., The Ratliff–Rush ideals in a Noetherian ring, Comm. Algebra 20 (1992), 591622. MR 1146317. DOI 10.1080/00927879208824359.CrossRefGoogle Scholar
[8] Heinzer, W., Rotthaus, C., and Sally, J. D., Formal fibers and birational extensions, Nagoya Math. J. 131 (1993), 138. MR 1238631.Google Scholar
[9] Kabbaj, S. and Mimouni, A., t-Class semigroups of integral domains, J. Reine Angew. Math. 612 (2007), 213229. MR 2364057. DOI 10.1515/CRELLE.2007.088.Google Scholar
[10] Krull, W., Dimensionstheorie in Stellenringen, J. Reine Angew. Math. 179 (1938), 204226.Google Scholar
[11] Lipman, J., Stable ideals and Arf rings, Amer. J. Math. 93 (1971), 649685. MR 0282969.Google Scholar
[12] Matlis, E., Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511528. MR 0099360.CrossRefGoogle Scholar
[13] Matlis, E., Injective modules over Prüfer rings, Nagoya Math. J. 15 (1959), 5769. MR 0109840.Google Scholar
[14] Matlis, E., Torsion-Free Modules, University of Chicago Press, Chicago, 1972. MR 0344237.Google Scholar
[15] Matlis, E., 1-Dimensional Cohen-Macaulay Rings, Lecture Notes in Math. 327, Springer, Berlin, 1973. MR 0357391.Google Scholar
[16] Matsumura, H., Commutative Algebra, 2nd ed., Math. Lecture Note Series 56, Benjamin/Cummings, Reading, Mass., 1980. MR 0575344.Google Scholar
[17] Matsumura, H., Commutative Ring Theory, Cambridge Stud. Adv. Math. 8, Cambridge University Press, Cambridge, 1986. MR 0879273.Google Scholar
[18] Matsumura, H., “On the dimension of formal fibres of a local ring” in Algebraic Geometry and Commutative Algebra, Vol. I, Kinokuniya, Tokyo, 1988, 261266. MR 0977763.Google Scholar
[19] Mimouni, A., Ratliff–Rush closure of ideals in integral domains, Glasg. Math. J. 51 (2009), 681689. MR 2534017. DOI 10.1017/S0017089509990097.CrossRefGoogle Scholar
[20] Nagasawa, R., Some remarks on one-dimensional local domains, Publ. Res. Inst. Math. Sci. 11 (1975/76), 2130. MR 0441955.Google Scholar
[21] Nagata, M., Local Rings, Interscience Tracts Pure Appl. Math. 13, Wiley, New York, 1962. MR 0155856.Google Scholar
[22] Olberding, B., On the classification of stable domains, J. Algebra 243 (2001), 177197. MR 1851660. DOI 10.1006/jabr.2001.8832.CrossRefGoogle Scholar
[23] Olberding, B., Stability, duality, 2-generated ideals and a canonical decomposition of modules, Rend. Semin. Mat. Univ. Padova 106 (2001), 261290. MR 1876223.Google Scholar
[24] Olberding, B., “Stability of ideals and its applications” in Ideal Theoretic Methods in Commutative Algebra (Columbia, Mo., 1999), Lecture Notes Pure Appl. Math. 220, Dekker, New York, 2001, 319341. MR 1836608.Google Scholar
[25] Olberding, B., On the structure of stable domains, Comm. Algebra 30 (2002), 877895. MR 1883031. DOI 10.1081/AGB-120013188.Google Scholar
[26] Olberding, B., A counterpart to Nagata idealization, J. Algebra 365 (2012), 199221. MR 2928459. DOI 10.1016/j.jalgebra.2012.05.002.Google Scholar
[27] Olberding, B., One-dimensional bad Noetherian rings, to appear in Trans. Amer. Math. Soc., preprint, arXiv:1208.2913 [math.AC]Google Scholar
[28] Picozza, G. and Tartarone, F., Flat ideals and stability in integral domains, J. Algebra 324 (2010), 17901802. MR 2678822. DOI 10.1016/j.jalgebra.2010.07.021.Google Scholar
[29] Sally, J. D. and Vasconcelos, W. V., Stable rings and a problem of Bass, Bull. Amer. Math. Soc. (N.S.) 79 (1973), 574576. MR 0311643.Google Scholar
[30] Sally, J. D. and Vasconcelos, W. V., Stable rings, J. Pure Appl. Algebra 4 (1974), 319336. MR 0409430.Google Scholar
[31] Schmidt, F. K., Über die Erhaltung der Kettensätze der Idealtheorie bei beliebigen endlichen Körpererweiterungen, Math. Z. 41 (1936), 443450. MR 1545632. DOI 10. 1007/BF01180433.CrossRefGoogle Scholar
[32] Sega, L., Ideal class semigroups of overrings, J. Algebra 311 (2007), 702713. MR 2314730. DOI 10.1016/j.jalgebra.2006.10.030.Google Scholar
[33] Zanardo, P., The class semigroup of local one-dimensional domains, J. Pure Appl. Algebra 212 (2008), 22592270. MR 2426506. DOI 10.1016/j.jpaa.2008.03.015.Google Scholar
[34] Zanardo, P., Algebraic entropy of endomorphisms over local one-dimensional domains, J. Algebra Appl. 8 (2009), 759777. MR 2597279. DOI 10.1142/S0219498809003618.CrossRefGoogle Scholar