岩性油气藏 ›› 2023, Vol. 35 ›› Issue (4): 1–15.doi: 10.12108/yxyqc.20230401

• 地质勘探 • 上一篇    

分支河流体系分类初探

张昌民1, 张祥辉1, ADRIAN J. Hartley2, 冯文杰1, 尹太举1, 尹艳树1, 朱锐1   

  1. 1. 长江大学 地球科学学院, 武汉 430100;
    2. 阿伯丁大学 地球科学学院, 英国 阿伯丁 AB24 3UE
  • 收稿日期:2022-09-15 修回日期:2022-10-15 发布日期:2023-07-01
  • 通讯作者: 张祥辉(1993-),男,长江大学在读博士研究生,研究方向为河流沉积学。Email:zxhedu@126.com。 E-mail:zxhedu@126.com
  • 作者简介:张昌民(1963-),男,博士,教授,主要从事沉积学与石油地质学方面的科研和教学工作。地址:(430100) 湖北省武汉市蔡甸区大学路111号长江大学地球科学学院。Email:zcm@yangtzeu.edu.cn。
  • 基金资助:
    国家自然科学基金重点项目“分支河流体系沉积模式与储层定量预测模型”(编号:42130813)资助。

On classification of distributive fluvial system

ZHANG Changmin1, ZHANG Xianghui1, ADRIAN J. Hartley2, FENG Wenjie1, YIN Taiju1, YIN Yanshu1, ZHU Rui1   

  1. 1. School of Geosciences, Yangtze University, Wuhan 430100, China;
    2. School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK
  • Received:2022-09-15 Revised:2022-10-15 Published:2023-07-01

摘要: 通过综述国内外分支河流体系(DFS)的研究进展,总结了DFS的地貌特征和主要类型,并探讨了DFS形成和发育的控制因素。研究结果表明: ①DFS不是新的或者特殊的河道类型,而是多种河道有规律的集合,地貌特征表现为水系网络从一点呈放射状展布,多种河型共同发育,河道几何形态变化大,沉积环境包括河道和河道间区域,沉积体系复杂;主要类型包括冲积扇、河流扇和巨型扇。②以DFS半径为关键指标,面积和坡度为辅助指标将DFS分为小型(冲积扇)、大型(河流扇)和巨型(巨型扇),小型DFS扇体半径小于30 km,面积小于100 km2,坡度大于1.0°;大型DFS半径为30~100 km,面积为100~1 000 km2,坡度小于1.0°;巨型DFS扇体半径大于100 km,面积大于1 000 km2,坡度小于0.5°,3种类型的分布范围有一定的交叉和重复,还需结合DFS的沉积水动力过程和沉积特征进行判别。③构造背景和气候是控制DFS形成与分布的最根本因素;流域面积、母岩性质直接影响DFS中沉积物供给总量、供给速率及成分和结构;地形坡度作为间接因素,与河流流量、流速等自生因素相结合,控制河道形态以及河道的分汊和决口,进而控制了DFS表面的沉积环境和沉积相分布。

关键词: 分支河流体系, 冲积扇, 河流扇, 巨型扇, 辫状河, 曲流河, 扇体半径

Abstract: Based on the research progress of distributive fluvial system(DFS), the geomorphic characteristics and main types of DFS were summarized, and the controlling factors of the formation and development of DFS were discussed. The results show that:(1)DFS is not a new or special river channel type,but a regular collection of multiple river channels. The geomorphic characteristics are shown as follows: the river network is radially distributed from one-point,various types of rivers develop together,the geometric shape of the river channel changes greatly,the sedimentary environment includes river channel and interchannel,and the sedimentary system is complex. The main types include alluvial fan,fluvial fan and megafan.(2)Based on DFS radius,area and their surface slope,DFS can be divided into three types as microDFS,macroDFS and megaDFS. The micro DFS,i.e.,alluvial fan,with a radius of less than 30 km,an area of less than 100 km2 and a slope of greater than 1.0°. The macroDFS is called fluvial fan,with radius greater than 30 km but less than 100 km,their area is greater than 100 km2 but less than 1000 km2,and slope is less than 1.0°. The megaDFS is megafan,which has a radius of greater than 100 km,an area of greater than 1 000 km2 and a slope of less than 0.5°. The distribution ranges of the three types have certain overlap and repetition. It is also necessary to distinguish them by combining the hydrodynamic process and sedimentary characteristics of DFS.(3)Tectonic and climate are the most fundamental factors controlling the formation and distribution of DFS. Basin area and provenance may influence the total sediment supply and sediments composition of the depositional system. As an indirect factor,DFS slope may control the channel morphology and the bifurcation and crevasse of the channel together with channel flow and velocity, thus control the sedimentary environment and depositional facies distribution of the DFS.

Key words: distributive fluvial system, alluvial fan, fluvial fan, megafan, braided river, meandering stream, fan radius

中图分类号: 

  • TE121.3
[1] JAMES N P, DALRYMPLE R W. Facies models 4[R]. Calgary:Geological Association of Canada, 2010.
[2] HARTLEY A J,WEISSMANN G S,NICHOLS G J,et al. Large distributive fluvial systems:Characteristics, distribution, and controls on development[J]. Journal of Sedimentary Research, 2010, 80(2):167-183.
[3] WEISSMANN G S, HARTLEY A J, NICHOLS G J, et al. Fluvial form in modern continental sedimentary basins:The distributive fluvial system[J]. Geology, 2010, 38(1):39-42.
[4] WEISSMANN G S, HARTLEY A J, SCUDERI L A, et al. Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record:A review[J]. Geomorphology, 2015, 250:187-219.
[5] 张祥辉,张昌民,冯文杰,等.干旱地区分支河流体系沉积特征:以疏勒河分支河流体系为例[J].石油勘探与开发, 2021, 48(4):756-767. ZHANG Xianghui, ZHANG Changmin, FENG Wenjie, et al. Sedimentary characteristics of distributive fluvial system in arid area:A case study of the Shule River distributive fluvial system[J]. Petroleum Exploration and Development, 2021, 48(4):756-767.
[6] SCHELTINGA R C T V, MCMAHON W, DIJK W M V, et al. Experimental distributive fluvial systems:Bridging the gap between river and rock record[J]. The Depositional Record, 2020, 6(3):670-684.
[7] GRAY E, HARTLEY A, HOWELL J. The influence of stratigraphy and facies distribution on reservoir quality and production performance in the Triassic Skagerrak Formation of the UK and Norwegian Central North Sea[J]. Geological Society, 2022, 494(1):379-409.
[8] HARTLEY A J, OWEN A. Paleohydraulic analysis of an ancient distributive fluvial system[J]. Journal of Sedimentary Research, 2022, 92(5):445-459.
[9] 张昌民,朱锐, HARTLEY A J,等.分支河流体系基本特征与研究进展[M].武汉:中国地质大学出版社, 2020. ZHANG Changmin, ZHU Rui, HARTLEY A J, et al. Distributive fluvial system:Their characteristics and research development[M]. Wuhan:Press of Chinese University of Geosciences, 2020.
[10] 张昌民,胡威,朱锐,等.分支河流体系的概念及其对油气勘探开发的意义[J].岩性油气藏, 2017, 29(3):1-9. ZHANG Changmin, HU Wei, ZHU Rui, et al. Concept of distributive fluvial system and its significance to oil and gas exploration and development[J]. Lithologic Reservoirs, 2017, 29(3):1-9.
[11] 张祥辉,张昌民,冯文杰,等.苏干湖盆地周缘分支河流体系的几何形态及影响因素分析[J].地质学报, 2019, 93(11):2947-2959. ZHANG Xianghui, ZHANG Changmin, FENG Wenjie, et al. Geometry and control factors of distributive fluvial system around the Sugan Lake Basin[J]. Acta Geologica Sinica, 2019, 93(11):2947-2959.
[12] 黄若鑫,张昌民,冯文杰.冲断带构造作用控制下的分支河流体系特征及其成因分析:以塔里木盆地西北缘柯坪地区为例[J].沉积学报, 2022, 40(1):166-181. HUANG Ruoxin, ZHANG Changmin, FENG Wenjie. Characteristics and factor analysis of distributive fluvial systems due to tectonic thrust belt activity:Example of Keping area, northwestern Tarim Basin[J]. Acta Sedimentologica Sinica, 2022, 40(1):166-181.
[13] FIELDING C R, ASHWORTH P J, BEST J L, et al. Tributary, distributary and other fluvial patterns:What really represents the norm in the continental rock record?[J]. Sedimentary Geology, 2012, 261:15-32.
[14] 张元福,戴鑫,王敏,等.河流扇的概念、特征及意义[J].石油勘探与开发, 2020, 47(5):947-957. ZHANG Yuanfu, DAI Xin, WANG Min, et al. The concept, characteristics and significance of fluvial fans[J]. Petroleum Exploration and Development, 2020, 47(5):947-957.
[15] 钱宁.关于河流分类及成因问题的讨论[J].地理学报, 1985(1):1-10. QIAN Ning. On the classification and causes of formation of different channel patterns[J]. Acta Geographica Sinica, 1985(1):1-10.
[16] 裘亦楠.河流沉积学中的河型分类[J].石油勘探与开发, 1985, 12(2):72-74. QIU Yinan. Classification of river pattern in fluvial Sedimentology[J]. Petroleum Exploration and Development, 1985, 12(2):72-74.
[17] OWEN A, NICHOLS G J, HARTLEY A J, et al. Quantification of a distributive fluvial system:The salt wash DFS of the Morrison, SW USA[J]. Journal of Sedimentary Research, 2015, 85(5):544-561.
[18] DAVIDSON S K, HARTLEY A. A quantitative approach to linking drainage area and distributive-fluvial system area in modern and ancient endorheic basins[J]. Journal of Sedimentary Research, 2014, 84(11):1005-1020.
[19] ASSINE M L. River avulsions on the Taquari Megafan, Pantanal wetland, Brazil[J]. Geomorphology, 2005, 70(3/4):357-371.
[20] ASSINE M L, CORRADINI F A, PUPIM F N, et al. Channel arrangements and depositional styles in the São Lourenço fluvial megafan, Brazilian Pantanal wetland[J]. Sedimentary Geology, 2014, 301:172-184.
[21] ASSINE M L, MERINO E R, PUPIM F N, et al. The quaternary alluvial systems tract of the Pantanal Basin, Brazil[J]. Brazilian Journal of Geology, 2015, 45(3):475-489.
[22] TRENDELL A M, ATCHLEY S C, NORDT L C. Facies analysis of a probable large-fluvial-fan depositional system:The Upper Triassic Chinle Formation at Petrified Forest National Park, Arizona, USA[J]. Journal of Sedimentary Research, 2013, 83(10):873-895.
[23] OWEN A, NICHOLS G J, HARTLEY A J, et al. Vertical trends within the prograding Salt Wash distributive fluvial system, SW United States[J]. Basin Research, 2017, 29(1):64-80.
[24] GULLIFORD A R, FLINT S S, HODGSON D M. Testing applicability of models of distributive fluvial systems or trunk rivers in ephemeral systems:Reconstructing 3D fluvial architecture in the Beaufort Group, South Africa[J]. Journal of Sedimentary Research, 2014, 84(12):1147-1169.
[25] DAVIDSON S K, HARTLEY A J, WEISSMANN G S, et al. Geomorphic elements on modern distributive fluvial systems[J]. Geomorphology, 2013, 181:82-95.
[26] 张昌民,王绪龙,陈哲,等.季节性河道与暂时性河道的沉积特征:以新疆白杨河冲积扇为例[J].沉积学报, 2020, 38(3):505-517. ZHANG Changmin, WANG Xulong, CHEN Zhe, et al. Sedimentary characteristics of ephemeral and intermittent channels:A case study of the Baiyanghe fan, Xinjiang, China[J]. Acta Sedimentologica Sinica, 2020, 38(3):505-517.
[27] DREW F. Alluvial and lacustrine deposits and glacial records of the Upper-Indus Basin[J]. Quarterly Journal of the Geological Society, 1873, 29(1/2):441-471.
[28] HARVEY A M. Factors influencing Quaternary alluvial fan development in southeast Spain[M] //RACHOCKI A, MICHAEL C. Alluvial fans:A field approach. Hoboken:Wiley, 1990:247-269.
[29] HARVEY A M. Alluvial fan dissection:Relationships between morphology and sedimentation[J]. Geological Society, 1987, 35(1):87-103.
[30] HARVEY A M. Process interactions, temporal scales and the development of hillslope gully systems:Howgill Fells, northwest England[J]. Geomorphology, 1992, 5(3/4/5):323-344.
[31] BLAIR T C, MCPERSON J G. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages[J]. Journal of Sedimentary Research, 1994, 64(3):450-489.
[32] BLAIR T C, MCPHERSON J G. Alluvial fan processes and forms[M] //ABRAHAMS A D, PARSONS A J. Geomorphology of desert environments. Dordrecht:Springer, 1994:354-402.
[33] BLAIR T C. Tectonic and hydrologic controls on cyclic alluvial fan,fluvial,and lacustrine rift-basin sedimentation,JurassicLowermost Cretaceous Todos Santos Formation, Chiapas, Mexico[J]. Journal of Sedimentary Research, 1987, 57(5):845-862.
[34] BLAIR T C. Form, facies, and depositional history of the North Long John rock avalanche, Owens Valley, California[J]. Canadian Journal of Earth Sciences, 1999, 36(6):855-870.
[35] BLAIR T C, MCPHERSON J G. Recent debris-flow processes and resultant form and facies of the dolomite alluvial fan, Owens Valley, California[J]. Journal of Sedimentary Research, 1998, 68(5):800-818.
[36] BLAIR T C, MCPHERSON J G. Grain-size and textural classification of coarse sedimentary particles[J]. Journal of Sedimentary Research, 1999, 69(1):6-19.
[37] 鲁新川,史基安,葛冰,等.准噶尔盆地西北缘中拐-五八区二叠系上乌尔禾组砂砾岩储层特征[J].岩性油气藏, 2012, 24(6):54-59. LU Xinchuan, SHI Ji'an, GE Bing, et al. Characteristics of glutenite reservoir of Permian Upper Wuerhe Formation in Zhongguai-Wuba area in the northwestern margin of Junggar Basin[J]. Lithologic Reservoirs, 2012, 24(6):54-59.
[38] 莫冯阳,牟中海,常琳,等.昆北油田切16井区路乐河组下段沉积相研究[J].岩性油气藏, 2013, 25(6):14-19. MO Fengyang, MU Zhonghai, CHANG Lin, et al. Sedimentary facies of the lower Lulehe Formation in Qie 16 well block of Kunbei Oilfield[J]. Lithologic Reservoirs, 2013, 25(6):14-19.
[39] GALLOWAY W E, HOBDAY D K. Terrigenous clastic depositional systems:Applications to fossil fuel and groundwater resources[M]. Berlin:Springer-Verlag, 1996:36.
[40] STANISTREET I G, MCCARTHY T S. The Okavango Fan and the classification of subaerial fan systems[J]. Sedimentary Geology, 1993, 85(1/2/3/4):115-133.
[41] SINGH H, PARKASH B, GOHAIN K. Facies analysis of the Kosi megafan deposits[J]. Sedimentary Geology, 1993, 85(1/2/3/4):87-113.
[42] PLINK-BJORKLUND P,WANG Jianqiao,BELOBRAYDIC M, et al. Fluvial megafans, terminal fans, distributive fluvial systems:A stratigrapher's nightmare?[R]. AAPG Annual Convention and Exhibition, 2014.
[43] GAURAV K, MÉTIVIER F, DEVAUCHELLE O, et al. Morphology of the Kosi megafan channels[J]. Earth Surface Dynamics, 2015, 3(2):321-331.
[44] SHUKLA U K, SINGH I B, SHARMA M, et al. A model of alluvial megafan sedimentation:Ganga megafan[J]. Sedimentary Geology, 2001, 144(3/4):243-262.
[45] HARTLEY A J, WEISSMANN G S, NICHOLS G J, et al. Fluvial form in modern continental sedimentary basins:Distributive fluvial systems:Reply[J]. Geology, 2010, 38(12):231.
[46] 李晓辉,杜晓峰,官大勇,等.辽东湾坳陷东北部新近系馆陶组辫曲过渡型河流沉积特征[J].岩性油气藏, 2022, 34(3):93-103. LI Xiaohui, DU Xiaofeng, GUAN Dayong, et al. Sedimentary characteristics of braided-meandering transitional river of Neogene Guantao Formation in northeastern Liaodong Bay Depression[J]. Lithologic Reservoirs, 2022, 34(3):93-103.
[47] 白振华,詹燕涛,王赢,等.苏里格气田苏14井区盒8段河流相砂体展布与演化规律研究[J].岩性油气藏, 2013, 25(1):56-62. BAI Zhenhua, ZHAN Yantao, WANG Ying, et al. Fluvial sand bodies distribution and evolution of He 8 member in Su 14 block of Sulige Gas Field[J]. Lithologic Reservoirs, 2013, 25(1):56-62.
[48] 张金亮,戴朝强,张晓华.末端扇:在中国被忽略的一种沉积作用类型[J].地质论评, 2007, 53(2):170-179. ZHANG Jinliang, DAI Chaoqiang, ZHANG Xiaohua. Terminal fan:A type of sedimentation ignored in China[J]. Geological Review, 2007, 53(2):170-179.
[49] 孟万斌,李敏,刘家铎,等.柴达木盆地北缘潜西地区路乐河组末端扇沉积体系分析[J].岩性油气藏, 2010, 22(4):37-42. MENG Wanbin, LI Min, LIU Jiaduo, et al. Terminal fan sedimentary system of Lulehe Formation in Qianxi area in northern margin of Qaidam Basin[J]. Lithologic Reservoirs, 2010, 22(4):37-42.
[50] MUKERJI A B. Geomorphic patterns and processes in the terminal triangular tract of inland streams in Sutlej-Yamuna Plain[J]. Journal of The Geological Society of India, 1975, 16:450-459.
[51] MUKERJI A B. Terminal fans of inland streams in Sutlej-Yamuna Plain, India[J]. Geomorphology, 1976, 20(2):190-204.
[52] FRIEND P F. Distinctive features of some ancient river systems[J]. Dallas Geological Society, 1977:531-542.
[53] PARKASH B, AWASTHI A K, GOHAIN K. Lithofacies of the Markanda terminal fan,Kurukshetra district,Haryana,India[J]. Modern and Ancient Fluvial Systems, 1983:337-344.
[54] KELLY S B, OLSEN H. Terminal fans:A review with reference to Devonian examples[J]. Sedimentary Geology, 1993, 85(1/2/3/4):339-374.
[55] 张晓华,张金亮.高分辨率层序地层学在濮城油田西区沙二上亚段2+3砂组末端扇沉积体系中的应用[J].地层学杂志, 2008, 32(4):426-438. ZHANG Xiaohua, ZHANG Jinliang. Application of high-resolution sequence stratigraphy to a terminal fan system, Layers 2 and 3 of the upper second member of Shahejie Formation, Pucheng Oilfield[J]. Journal of Stratigraphy, 2008, 32(4):426-438.
[56] NICHOLS G J, FISHER J A. Processes, facies and architecture of fluvial distributary system deposits[J]. Sedimentary Geology, 2007, 195(1/2):75-90.
[57] 李新坡,莫多闻,朱忠礼.侯马盆地冲积扇及其流域地貌发育规律[J].地理学报, 2006, 61(3):241-248. LI Xinpo, MO Duowen, ZHU Zhongli. Developments of alluvial fans and their catchments in Houma Basin[J]. Acta Geographica Sinica, 2006, 61(3):241-248.
[58] BILMES A, VEIGA G D. Linking mid-scale distributive fluvial systems to drainage basin area:geomorphological and sedimentological evidence from the endorheic Gastre Basin, Argentina[G] //VENTRA D, CLARKE L E. Geology and geomorphology of alluvial and fluvial fans:Terrestrial and planetary perspectives. London:Geological Society, 2016, 440:265-279.
[59] 高崇龙,纪友亮,靳军,等.阵发性洪水控制的河流型冲积扇沉积特征及沉积演化模式:以和什托洛盖盆地北缘现代白杨冲积扇为例[J].石油学报, 2020, 41(3):310-328. GAO Chonglong, JI Youliang, JIN Jun, et al. Sedimentary characteristics and evolution model of fluvial fan dominated by intermittent flood flows:A case study of Baiyang alluvial fan within the northern margin of Heshituoluogai Basin[J]. Acta Petrolei Sinica, 2020, 41(3):310-328.
[60] 张昌民,朱锐,郭旭光,等.干旱地区河流扇三角洲-河流扇演替模式:来自黄羊泉扇的启示[J].地球科学, 2020, 45(5):1791-1806. ZHANG Changmin, ZHU Rui, GUO Xuguang, et al. Arid fluvial fan delta-fluvial fan transition:Implications of Huangyangquan fan area[J]. Earth Science, 2020, 45(5):1791-1806.
[61] ZHANG Xianghui, ZHANG Changmin, FENG Wenjie, et al. Application of remote sensing in the description of fluvial system in dryland:A case study of Golmud distributive fluvial system, Qaidam Basin, NW China[J]. Journal of Palaeogeography, 2022, 11(4):601-617.
[62] HARTLEY A J, OWEN A, SWAN A, et al. Recognition and importance of amalgamated sandy meander belts in the continental rock record[J]. Geology, 2015, 43(8):679-682.
[63] HARTLEY A J, WEISSMANN G S, BHATTACHARYYA P, et al. Soil development on modern distributive fluvial systems:Preliminary observations with implications for interpretation of paleosols in the rock record[C]//DRIESE S G, NORDT L C, MCCARTHY P J. New frontiers in paleopedology and terrestrial paleoclimatology. Tulsa:SEPM Special Publition, 2013:149-158.
[64] 石雨昕,高志勇,周川闽,等.新疆博斯腾湖北缘现代冲积扇与扇三角洲平原分支河流体系的沉积特征与意义[J].石油学报, 2019, 40(5):542-556. SHI Yuxin, GAO Zhiyong, ZHOU Chuanmin, et al. Sedimentary characteristics and significance of distributive fluvial system of modern alluvial fan and fan delta plain in the northern margin of Bosten lake, Xinjiang[J]. Acta Petrolei Sinica, 2019, 40(5):542-556.
[65] 马玉凤,李双权,潘星慧.黄河冲积扇发育研究述评[J].地理学报, 2015, 70(1):49-62. MA Yufeng, LI Shuangquan, PAN Xinghui. A review on development of the Yellow River alluvial fan[J]. Acta Geographica Sinica, 2015, 70(1):49-62.
[66] 李相博,刘化清,邓秀芹,等.干旱环境河流扇概念与鄂尔多斯盆地延长组"满盆砂"成因新解[J].沉积学报, 2021, 39(5):1208-1221. LI Xiangbo, LIU Huaqing, DENG Xiuqin, et al. The concept of fluvial fans in an arid environment:A new explanation of the origin of "sand-filled basins" in the Yanchang Formation, Ordos Basin[J]. Acta Sedimentologica Sinica, 2021, 39(5):1208-1221.
[67] 李相博,刘化清,黄军平,等.干湿气候交替与内陆湖盆河流扇砂体的形成与分布:以鄂尔多斯盆地延长组为例[J].地质学报, 2023, 97(3):822-838. LI Xiangbo, LIU Huaqing, HUANG Junping, et al. Alternation of arid-humid climate and formation and distribution of fluvial fan sand in the central area of Inland Lake basin:Taking Yanchang Formation in Ordos Basin as an example[J]. Acta Geologica Sinica, 2023, 97(3):822-838.
[68] LEIER A L, DECELLES P G, PELLETIER J D. Mountains, monsoons and megafans[J]. Geology, 2005, 33(4):289-292.
[1] 徐壮, 石万忠, 王任, 骆福嵩, 夏永涛, 覃硕, 张晓. 塔北隆起西部地区白垩系碎屑岩油气成藏规律及成藏模式[J]. 岩性油气藏, 2023, 35(2): 31-46.
[2] 马东烨, 陈宇航, 赵靖舟, 吴伟涛, 宋平, 陈梦娜. 鄂尔多斯盆地东部二叠系下石盒子组8段河流相砂体构型要素[J]. 岩性油气藏, 2023, 35(1): 63-73.
[3] 任梦怡, 胡光义, 范廷恩, 范洪军. 秦皇岛32-6油田北区新近系明化镇组下段复合砂体构型及控制因素[J]. 岩性油气藏, 2022, 34(6): 141-151.
[4] 刘阳平, 吴博然, 于忠良, 余成林, 王立鑫, 尹艳树. 辫状河砂岩储层三维地质模型重构技术——以冀东油田高尚堡区块新近系馆陶组为例[J]. 岩性油气藏, 2022, 34(4): 159-170.
[5] 李晓辉, 杜晓峰, 官大勇, 王志萍, 王启明. 辽东湾坳陷东北部新近系馆陶组辫曲过渡型河流沉积特征[J]. 岩性油气藏, 2022, 34(3): 93-103.
[6] 易志凤, 张尚锋, 王雅宁, 徐恩泽, 赵韶华, 王玉瑶. 差异曲率下的曲流河点坝砂体定量表征——以黄河源区白河现代沉积为例[J]. 岩性油气藏, 2022, 34(1): 34-42.
[7] 赵小萌, 郭峰, 彭晓霞, 张翠萍, 郭岭, 师宇翔. 鄂尔多斯盆地安边地区延10砂质辫状河相储层特征及主控因素[J]. 岩性油气藏, 2021, 33(6): 124-134.
[8] 张本健, 田云英, 曾琪, 尹宏, 丁熊. 四川盆地西北部三叠系须三段砂砾岩沉积特征[J]. 岩性油气藏, 2021, 33(4): 20-28.
[9] 袁纯, 张惠良, 王波. 大型辫状河三角洲砂体构型与储层特征——以库车坳陷北部阿合组为例[J]. 岩性油气藏, 2020, 32(6): 73-84.
[10] 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154.
[11] 赵汉卿, 温慧芸, 穆朋飞, 李超, 吴穹螈. 垦利A油田沙三上段近源辫状河三角洲沉积特征[J]. 岩性油气藏, 2019, 31(3): 37-44.
[12] 印森林, 陈恭洋, 陈玉琨, 吴小军. 砂砾岩储层孔隙结构模态控制下的剩余油分布——以克拉玛依油田七东1区克下组为例[J]. 岩性油气藏, 2018, 30(5): 91-102.
[13] 杨有星, 金振奎, 白忠凯, 高永进, 韩淼, 张金虎. 辫状河单河道砂体接触关系及主控因素分析——以新疆克拉玛依,山西柳林、大同和陕西延安辫状河露头为例[J]. 岩性油气藏, 2018, 30(2): 30-38.
[14] 崔连可, 单敬福, 李浮萍, 崔璐, 种健. 基于稀疏井网条件下的古辫状河道心滩砂体估算——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2018, 30(1): 155-164.
[15] 甘立琴, 苏进昌, 谢岳, 李超, 何康, 来又春. 曲流河储层隔夹层研究——以秦皇岛32-6油田为例[J]. 岩性油气藏, 2017, 29(6): 128-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!