岩性油气藏 ›› 2019, Vol. 31 ›› Issue (2): 105–114.doi: 10.12108/yxyqc.20190212

• 油气地质 • 上一篇    下一篇

湘中坳陷海陆过渡相页岩吸附能力及控制因素

杨滔1,2, 曾联波1, 聂海宽2, 冯动军2, 包汉勇3, 王濡岳1,2   

  1. 1. 中国石油大学(北京)地球科学学院, 北京 102249;
    2. 中国石油化工股份有限公司 石油勘探开发研究院, 北京 100083;
    3. 中国石化江汉油田分公司 勘探开发研究院, 武汉 430223
  • 收稿日期:2018-09-18 修回日期:2018-11-25 出版日期:2019-03-21 发布日期:2019-03-21
  • 通讯作者: 曾联波(1967-),男,博士,教授,主要从事储层裂缝表征预测与地应力分析方面的研究工作。Email:lbzeng@sina.com。 E-mail:lbzeng@sina.com
  • 作者简介:杨滔(1994-),男,中国石油大学(北京)在读硕士研究生,研究方向为页岩储层特征。地址:(102249)北京市昌平区府学路18号中国石油大学(北京)地球科学学院。Email:barryyt@sina.com
  • 基金资助:
    石油化工联合基金项目“页岩油气甜点预测的储层地质力学基础理论研究”(编号:U1663203)资助

Adsorption capacity and controlling factors of marine-continental transitional shale in Xiangzhong Depression

YANG Tao1,2, ZENG Lianbo1, NIE Haikuan2, FENG Dongjun2, BAO Hanyong3, WANG Ruyue1,2   

  1. 1. College of Geosciences, China University of Petroleum, Beijing 102249, China;
    2. Research Institute of Petroleum Exploration and Production, Sinopec, Beijing 100083, China;
    3. Research Institute of Exploration and Development, Sinopec Jianghan Oilfield Company, Wuhan 430223, China
  • Received:2018-09-18 Revised:2018-11-25 Online:2019-03-21 Published:2019-03-21

摘要: 为了研究湘中坳陷二叠系龙潭组和大隆组黑色页岩的吸附能力及其控制因素,开展了全岩矿物含量分析、有机地球化学分析、储层物性分析和等温吸附实验研究。结果表明:①页岩主要为硅质页岩,石英质量分数平均为34.4%,且多为生物成因硅,黏土矿物质量分数平均为24.4%,矿物组分特征与美国Barnett页岩和四川盆地古生界优质海相页岩类似。②页岩中干酪根类型以Ⅱ2型为主,处于成熟阶段,有机碳质量分数平均为2.63%,有机质孔发育,主要为微孔和中孔。③页岩吸附能力较强,饱和吸附质量体积为0.75~8.60 m3/t,平均为4.51 m3/t,具有良好的甲烷吸附能力。④页岩吸附能力主要受控于有机碳含量、氯仿沥青"A"、总烃、石英含量、岩石密度和孔隙结构。其中,有机碳含量对页岩吸附能力的影响最为显著。湘中坳陷海陆过渡相页岩具有较大的勘探潜力。

关键词: 海陆过渡相, 页岩气, 有机碳含量, 吸附能力, 二叠系, 湘中坳陷

Abstract: In order to study the adsorption capacity and controlling factors of black shale of Permian Longtan Formation and Dalong Formation in Xiangzhong Depression,a variety of experimental analyses such as total rock mineral content,organic geochemistry,reservoir physical properties and isothermal adsorption were carried out. The results show that:(1) Shales are mainly siliceous shales with an average quartz mass fraction of 34.4%,mostly biogenic silicon,and average clay mineral mass fraction of 24.4%. The mineral composition characteristics are similar to those of Barnett shale in the United States and high-quality marine shale of Paleozoic in Sichuan Basin. (2) Kerogen in shale is mainly type Ⅱ2,which is in mature stage. The average TOC mass fraction is 2.63%. Organic pores are developed,mainly micropores and mesopores. (3) Shale has a strong adsorption capacity,and the saturated adsorption mass volume is 0.75-8.60 m3/t,with an average of 4.51 m3/t,which has good methane adsorption capacity. (4) Shale adsorption capacity is mainly controlled by TOC content,chloroform asphalt "A",total hydrocarbon,quartz content,rock density and pore structure. Among them,TOC content is the most significant controlling factor. The marine-continental transitional shale in Xiangzhong Depression has great exploration potential.

Key words: marine-continental transitional facies, shale gas, TOC content, adsorption capacity, Permian, Xiangzhong Depression

中图分类号: 

  • TE122
[1] 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布.天然气工业, 2004, 24(7):15-18. ZHANG J C, JIN Z J, YUAN M S. Reservoiring mechanism of shale gas and its distribution. Natural Gas Industry, 2004, 24(7):15-18.
[2] CURTIS J B. Fractured shale-gas systems. AAPG Bulletin, 2002, 86(11):1921-1938.
[3] 李新景, 胡素云, 程克明. 北美裂缝性页岩气勘探开发的启示.石油勘探与开发, 2007, 34(4):392-400. LI X J, HU S Y, CHENG K M. Suggestions from the development of fractured shale gas in North America. Petroleum Exploration and Development, 2007, 34(4):392-400.
[4] 朱汉卿, 贾爱林, 位云生, 等. 基于氩气吸附的页岩纳米级孔隙结构特征.岩性油气藏, 2018, 30(2):77-84. ZHU H Q, JIA A L, WEI Y S, et al. Nanopore structure characteristics of shale based on Ar adsorption. Lithologic Reservoirs, 2018, 30(2):77-84.
[5] 何建华, 丁文龙, 付景龙, 等. 页岩微观孔隙成因类型研究.岩性油气藏, 2014, 26(5):30-35. HE J H, DING W L, FU J L, et al. Study on genetic type of micropore in shale reservoir. Lithologic Reservoirs, 2014, 26(5):30-35.
[6] 陈居凯, 朱炎铭, 崔兆帮, 等. 川南龙马溪组页岩孔隙结构综合表征及其分形特征.岩性油气藏, 2018, 30(1):55-62. CHEN J K, ZHU Y M, CUI Z B, et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):55-62.
[7] 毕赫, 姜振学, 李鹏, 等. 渝东南地区龙马溪组页岩吸附特征及其影响因素.天然气地球科学, 2014, 25(2):302-310. BI H, JIANG Z X, LI P, et al. Adsorption characteristic and influence factors of Longmaxi shale in southeastern Chongqing. Natural Gas Geoscience, 2014, 25(2):302-310.
[8] 顾忠安, 郑荣才, 王亮, 等. 渝东涪陵地区大安寨段页岩储层特征研究.岩性油气藏, 2014, 26(2):67-73. GU Z A, ZHENG R C, WANG L, et al. Characteristics of shale reservoir of Da'anzhai segment in Fuling area,eastern Chongqing. Lithologic Reservoirs, 2014, 26(2):67-73.
[9] 周启伟, 李勇, 汪正, 等. 龙门山前陆盆地南段须家河组页岩有机地球化学特征.岩性油气藏, 2016, 28(6):45-51. ZHOU Q W, LI Y, WANG Z, et al. Organic geochemical characteristics of shale of Xujiahe Formation in the southern Longmen Mountain foreland basin. Lithologic Reservoirs, 2016, 28(6):45-51.
[10] 顾志翔, 彭勇民, 何幼斌, 等. 湘中坳陷二叠系海陆过渡相页岩气地质条件.中国地质, 2015, 42(1):288-299. GU Z X, PENG Y M, HE Y B, et al. Geological conditions of Permian sea-land transitional facies shale gas in the Xiangzhong Depression. Geology in China, 2015, 42(1):288-299.
[11] 刘光祥, 金之钧, 邓模, 等. 川东地区上二叠统龙潭组页岩气勘探潜力.石油与天然气地质, 2015, 36(3):481-487. LIU G X, JIN Z J, DENG M, et al. Exploration potential for shale gas in the Upper Permian Longtan Formation in eastern Sichuan Basin. Oil & Gas Geology, 2015, 36(3):481-487.
[12] 包书景, 林拓, 聂海宽, 等. 海陆过渡相页岩气成藏特征初探:以湘中坳陷二叠系为例.地学前缘, 2016, 23(1):44-53. BAO S J, LIN T, NIE H K, et al. Preliminary study of the transitional facies shale gas reservoir characteristics:Taking Permian in Xiangzhong Depression as an example. Geoscience Frontiers, 2016, 23(1):44-53.
[13] 陈洁, 潘树仁, 周国兴. 江苏下扬子区二叠系龙潭组-大隆组页岩气勘探前景分析.中国煤炭地质, 2013, 25(10):22-25. CHEN J, PAN S R, ZHOU G X. Permian Longtan FormationDalong Formation shale gas exploration prospect analysis in Lower Yangtze area, Jiangsu. Coal Geology of China, 2013, 25(10):22-25.
[14] ANCELL K L, PRICE H S, FORD W K. An investigation of the gas producing and storage mechanism of the Devonian Shale at Cottageville Field. SPE 7938, 1979.
[15] LANGMUIR I. The adsorption of gases on plane surface glass, mica and platinum. Journal of the American Chemical Society, 1918, 40(9):1361-1403.
[16] ROSS D J K, BUSIN R M. Shale gas potential of the lower Jurassic Gordondale member, northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 2007, 55(1):51-75.
[17] ROSS D J K, BUSIN R M. Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoir. Fuel, 2007, 86(17):2696-2706.
[18] 申宝剑, 秦建中, 冯丹, 等. 烃源岩有机碳含量与生排油效率动态评价.石油实验地质, 2017, 39(4):505-510. SHEN B J, QIN J Z, FENG D, et al. Dynamic assessment of organic carbon content and hydrocarbon generation and expulsion efficiency in source rocks. Petroleum Geology and Experiment, 2017, 39(4):505-510.
[19] 董春梅, 马存飞, 栾国强, 等. 泥页岩热模拟实验及成岩演化模式. 沉积学报, 2015, 33(5):1053-1061. DONG C M, MA C F, LUAN G Q, et al. Pyrolysis simulation experiment and diagenesis evolution pattern of shale. Acta Sedimentologica Sinica, 2015, 33(5):1053-1061.
[20] 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 2016, 23(1):1-10. JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin. Geoscience Frontiers, 2016, 23(1):1-10.
[21] ROWE H D, LOUCKS R G, RUPPEL S, et al. Mississippian Barnett Formation,Fort Worth Basin, Texas:Bulk geochemical inferences and Mo-TOC constraint on the severity of hydrographic restriction. Chemical Geology, 2008, 257(1/2):16-25.
[22] ANGEL D L. Carbon flow within the colonial radiolarian microcosm. Symbiosis, 1991, 10(1/3):195-217.
[23] YAMAMOTO K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terrances. Sedimentary Geology, 1987, 52(1):65-108.
[24] 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组-龙马溪组含气页岩中石英成因研究.天然气地球科学, 2016, 27(2):377-386. ZHAO J H, JIN Z J, JIN Z K, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin. Natural Gas Geoscience, 2016, 27(2):377-386.
[25] 陈启林, 黄成刚. 沉积岩中溶蚀作用对储集层的改造研究进展.地球科学进展, 2018, 33(11):1112-1129. CHEN Q L, HUANG C G. Research progress of the modification of reservoirs by dissolution in sedimentary rock. Advances in Earth Science, 2018, 33(11):1112-1129.
[26] PASSEY Q R, BOHACES K M, ESCH W L, et al. From oilprone source rock to gas-producing shale reservoir, geologic and petrophysical characterization of unconventional shale gas reservoirs. International Oil and Gas Conference and Exhibition in China, Beijing, 2010.
[27] 谢卫东, 王猛, 代旭光. 渝东南地区下志留统龙马溪组页岩吸附CO2 特征及影响因素分析.河南理工大学学报(自然科学版), 2018, 37(6):80-88. XIE W D, WANG M, DAI X G. CO2 adsorption characteristics and its affecting factors of Lower Silurian, Longmaxi Formation shale in southeast Chongqing. Journal of Henan Polytechnic University(Natural Science), 2018, 37(6):80-88.
[28] 曾芳. 不同类型泥页岩吸附能力定量表征研究.大庆:东北石油大学, 2014. ZENG F. A study on quantitative characterization of adsorption capacity of shale. Daqing:Northeast Petroleum University, 2014.
[29] 杨琛, 盛国英, 党志. 干酪根对多环芳烃吸附机理的初步研究.环境化学, 2007, 26(4):472-475. YANG C, SHENG G Y, DANG Z. Sorption mechanism of polycyclic aromatic hydrocarbons (PAHs) on kerogen. Environmental Chemistry, 2007, 26(4):472-475.
[30] SCHIEBER J G B. On the origin and significance of pyrite spheres in Devonian black shales of north America. Journal of Sedimentary Research, 2001, 71:155-166.
[31] 徐祖新, 韩淑敏, 王启超. 中扬子地区陡山沱组页岩储层中黄铁矿特征及其油气意义.岩性油气藏, 2015, 27(2):31-37. XU Z X, HAN S M, WANG Q C. Characteristics of pyrite and its hydrocarbon significance of shale reservoir of Doushantuo Formation in middle Yangtze area. Lithologic Reservoirs, 2015, 27(2):31-37.
[32] 聂海宽, 张金川. 页岩气聚集条件及含气量计算:以四川盆地及其周缘下古生界为例.地质学报, 2012, 86(2):349-361. NIE H K, ZHANG J C. Shale gas accumulation conditions and gas content calculation:a case study of Sichuan Basin and its periphery in the Lower Paleozoic. Acta Geologica Sinica, 2012, 86(2):349-361.
[1] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[2] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[3] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[4] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[5] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[6] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[7] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[8] 马永平, 张献文, 朱卡, 王国栋, 潘树新, 黄林军, 张寒, 关新. 玛湖凹陷二叠系上乌尔禾组扇三角洲沉积特征及控制因素[J]. 岩性油气藏, 2021, 33(1): 57-70.
[9] 姚军, 乐幸福, 陈娟, 苏旺, 张永峰. 基于拟三维多属性反演的优质烃源岩分布预测[J]. 岩性油气藏, 2021, 33(1): 248-257.
[10] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[11] 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132.
[12] 符东宇, 李勇明, 赵金洲, 江有适, 陈曦宇, 许文俊. 基于REV尺度格子Boltzmann方法的页岩气藏渗流规律[J]. 岩性油气藏, 2020, 32(5): 151-160.
[13] 王登, 余江浩, 赵雪松, 陈威, 黄佳琪, 徐聪. 四川盆地石柱地区自流井组页岩气成藏条件与勘探前景[J]. 岩性油气藏, 2020, 32(1): 27-35.
[14] 周瑞, 苏玉亮, 马兵, 张琪, 王文东. 随机分形体积压裂水平井CO2吞吐模拟[J]. 岩性油气藏, 2020, 32(1): 161-168.
[15] 蒋德鑫, 姜正龙, 张贺, 杨舒越. 烃源岩总有机碳含量测井预测模型探讨——以陆丰凹陷文昌组为例[J]. 岩性油气藏, 2019, 31(6): 109-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .