2023 Volume 13 Issue 5
Article Contents

Reza Chaharpashlou, Antonio M. Lopes. HYERS-ULAM-RASSIAS STABILITY OF A NONLINEAR STOCHASTIC FRACTIONAL VOLTERRA INTEGRO-DIFFERENTIAL EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2799-2808. doi: 10.11948/20230005
Citation: Reza Chaharpashlou, Antonio M. Lopes. HYERS-ULAM-RASSIAS STABILITY OF A NONLINEAR STOCHASTIC FRACTIONAL VOLTERRA INTEGRO-DIFFERENTIAL EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2799-2808. doi: 10.11948/20230005

HYERS-ULAM-RASSIAS STABILITY OF A NONLINEAR STOCHASTIC FRACTIONAL VOLTERRA INTEGRO-DIFFERENTIAL EQUATION

  • In this paper, we apply the fixed point technique to study the Hyers-Ulam and the Hyers-Ulam-Rassias stability of the stochastic fractional Volterra integro-differential equation with uncertainty for a kind of ϕ-Hilfer stochastic fractional differential equations. The findings represent an extension of some results found in the current literature.

    MSC: 45Dxx, 58Cxx, 33Exx
  • 加载中
  • [1] K. Biswas, G. Bohannan, R. Caponetto et al., Fractional-order devices, Springer, Cham, 2017.

    Google Scholar

    [2] R. Chaharpashlou and R. Saadati, Best approximation of a nonlinear fractional Volterra integro-differential equation in matrix MB-space, Advances in Difference Equations, 2021, 2021(1), 1–12. doi: 10.1186/s13662-020-03162-2

    CrossRef Google Scholar

    [3] R. Chaharpashlou, R. Saadati and T. Abdeljawad, Existence, uniqueness and HUR stability of fractional integral equations by random matrix control functions in MMB-space, Journal of Taibah University for Science, 2021, 15(1), 574–578. doi: 10.1080/16583655.2021.1994787

    CrossRef Google Scholar

    [4] R. Chaharpashlou, R. Saadati and A. Atangana, Ulam–Hyers–Rassias stability for nonlinear ψ-Hilfer stochastic fractional differential equation with uncertainty, Advances in Difference Equations, 2020, 2020(1), 1–10. doi: 10.1186/s13662-019-2438-0

    CrossRef Google Scholar

    [5] R. Chaharpashlou, R. Saadati and A. M. Lopes, Fuzzy Mittag–Leffler–Hyers–Ulam–Rassias stability of stochastic differential equations, Mathematics, 2023, 11(9).

    Google Scholar

    [6] C. D. Constantinescu, J. M. Ramirez and W. R. Zhu, An application of fractional differential equations to risk theory, Finance and Stochastics, 2019, 23(4), 1001–1024. doi: 10.1007/s00780-019-00400-8

    CrossRef Google Scholar

    [7] J. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, in Amer. Math. Soc, 74, 1968, 305–309.

    Google Scholar

    [8] M. El-Moneam, T. F. Ibrahim and S. Elamody, Stability of a fractional difference equation of high order, J. Nonlinear Sci. Appl, 2019, 12(2), 65–74.

    Google Scholar

    [9] J. Jiang, D. O'Regan, J. Xu and Z. Fu, Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions, Journal of Inequalities and Applications, 2019, 2019(1), 1–18. doi: 10.1186/s13660-019-1955-4

    CrossRef Google Scholar

    [10] P. Li, L. Chen, R. Wu et al., Robust asymptotic stability of interval fractional-order nonlinear systems with time-delay, Journal of the Franklin Institute, 2018, 355(15), 7749–7763. doi: 10.1016/j.jfranklin.2018.08.017

    CrossRef Google Scholar

    [11] A. M. Lopes and L. Chen, Fractional order systems and their applications, Fractal and Fractional, 2022, 6(7), 389. doi: 10.3390/fractalfract6070389

    CrossRef Google Scholar

    [12] S. Sevgin and H. Sevli, Stability of a nonlinear Volterra integro-differential equation via a fixed point approach, J. Nonlinear Sci. Appl, 2016, 9(1), 200–207. doi: 10.22436/jnsa.009.01.18

    CrossRef Google Scholar

    [13] J. Shu and J. Zhang, Random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations on unbounded domains, Journal of Applied Analysis & Computation, 2020, 10(6), 2592–2618.

    Google Scholar

    [14] J. Sousa and E. C. de Oliveira, On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator, Journal of Fixed Point Theory and Applications, 2018, 20(3), 1–21.

    Google Scholar

    [15] J. V. d. C. Sousa and E. C. De Oliveira, On the ψ-Hilfer fractional derivative, Communications in Nonlinear Science and Numerical Simulation, 2018, 60, 72–91. doi: 10.1016/j.cnsns.2018.01.005

    CrossRef Google Scholar

    [16] H. Waheed, A. Zada and J. Xu, Well-posedness and Hyers-Ulam results for a class of impulsive fractional evolution equations, Mathematical Methods in the Applied Sciences, 2021, 44(1), 749–771. doi: 10.1002/mma.6784

    CrossRef Google Scholar

    [17] J. Wang, M. Fec, Y. Zhou et al., Ulam's type stability of impulsive ordinary differential equations, Journal of Mathematical Analysis and Applications, 2012, 395(1), 258–264. doi: 10.1016/j.jmaa.2012.05.040

    CrossRef Google Scholar

    [18] J. Wang and X. Li, A uniform method to Ulam–Hyers stability for some linear fractional equations, Mediterranean Journal of Mathematics, 2016, 13(2), 625–635. doi: 10.1007/s00009-015-0523-5

    CrossRef Google Scholar

    [19] W. Wei, X. Li and X. Li, New stability results for fractional integral equation, Computers & Mathematics with Applications, 2012, 64(10), 3468–3476.

    Google Scholar

    [20] J. Xu, B. Pervaiz, A. Zada and S. O. Shah, Stability analysis of causal integral evolution impulsive systems on time scales, Acta Mathematica Scientia, 2021, 41(3), 781–800. doi: 10.1007/s10473-021-0310-2

    CrossRef Google Scholar

    [21] J. Xu, Z. Wei, D. O'Regan and Y. Cui, Infinitely many solutions for fractional Schrödinger-Maxwell equations, Journal of Applied Analysis and Computation, 2019, 9(3), 1165–1182.

    Google Scholar

Article Metrics

Article views(878) PDF downloads(193) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint