2023 Volume 13 Issue 3
Article Contents

Penghong Zhong, Ye Chen, Song Chen, Ganshan Yang. SOLITONS AND DOMAIN-WALL-ARRAY SOLUTIONS OF THE SCHRÖDINGER FLOW AND LANDAU-LIFSHITZ EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1388-1420. doi: 10.11948/20220200
Citation: Penghong Zhong, Ye Chen, Song Chen, Ganshan Yang. SOLITONS AND DOMAIN-WALL-ARRAY SOLUTIONS OF THE SCHRÖDINGER FLOW AND LANDAU-LIFSHITZ EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1388-1420. doi: 10.11948/20220200

SOLITONS AND DOMAIN-WALL-ARRAY SOLUTIONS OF THE SCHRÖDINGER FLOW AND LANDAU-LIFSHITZ EQUATION

  • We obtained some solitons and domain-wall-array solutions of the multidimensional Schrödinger flow and the Landau-Lifshitz equation using the homogeneous balance principle and general Jacobi elliptic-function method. These solutions include bright solitons and periodic solutions in terms of elliptic functions. We excluded several special types of solutions, such as kink profile solutions and dark solitons. The total phase profile of the solitons have two components: the kinematic origin, and the self-steepening effect. For the domain-wall-array solutions, the total phase profile consists of the kinematic origin, kinematic chirping, and self-steepening effect. In certain parameter domains, fundamental domain wall-array-solutions are chiral, and the propagation direction is determined by the sign of the self-steepening parameter. For ODEs deduced from Schrödinger flow that have no analytical solution, phase analysis is used to identify and classify the typical evolutionary pattern. Furthermore, the existence of limit cycles is verified, and the locations of singularities are precisely estimated.

    MSC: 35B07, 35B65
  • 加载中
  • [1] L. G. de Azevedo, M. A. de Moura, C. Cordeiro and B. Zeks, Solitary waves in a 1D isotropic Heisenberg ferromagnet, Journal of Physics C: Solid State Physics, 1982, 15, 7391-7396. doi: 10.1088/0022-3719/15/36/020

    CrossRef Google Scholar

    [2] I. Bejenaru, A. D. Ionescu and C. E Kenig, Global existence and uniqueness of Schrödinger maps in dimensions $d \geq 4$, Adv. Math., 2007, 215, 263-291. doi: 10.1016/j.aim.2007.04.009

    CrossRef Google Scholar

    [3] I. Bejenaru, A. D. Ionescu, C. E. Kenig and D. Tataru, Global Schrödinger maps in dimensions $d \geq 2$: Small data in the critical Sobolev spaces, Annals of Mathematics, 2011, 173(3), 1443-1506. doi: 10.4007/annals.2011.173.3.5

    CrossRef Google Scholar

    [4] G. Berkolaiko and P. Kuchment, Introduction to quantum graphs, Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society, 2013.

    Google Scholar

    [5] A. Biswas, Chirp-free bright optical solitons and conservation laws for complex Ginzburg-Landau equation with three nonlinear forms, Optik, 174, 207-215, 2018.

    Google Scholar

    [6] P. A. Clarkson and J. A. Tuszynski, Exact solutions of the multidimensional derivative nonlinear Schrödinger equation for many-body systems of criticality, Journal of Physics A: Mathematical and General, 1990, 23(19), 4269-4288. doi: 10.1088/0305-4470/23/19/013

    CrossRef Google Scholar

    [7] C. Dai, Y. Wang and C. Yan, Chirped and chirp-free self-similar cnoidal and solitary wave solutions of the cubic-quintic nonlinear Schrödinger equation with distributed coefficients, Optics Communications, 2010, 283(7), 1489-1494. doi: 10.1016/j.optcom.2009.11.082

    CrossRef Google Scholar

    [8] L. G. de Azevedo, M. A. de Moura, C. Cordeiro and B. Zeks, Solitary waves in a 1d isotropic Heisenberg ferromagnet, Journal of Physics C: Solid State Physics, 1982, 15(36), 7391-7396. doi: 10.1088/0022-3719/15/36/020

    CrossRef Google Scholar

    [9] Q. Ding, Explicit blow-up solutions to the Schrödinger maps from $R^2$ to the hyperbolic 2-space $H^2$, Journal of Mathematical Physics, 2009, 50(10), 103507. doi: 10.1063/1.3218848

    CrossRef Google Scholar

    [10] S. Ding and C. Wang, Finite time singularity of the landau-lifshitz-gillbert equation, International Mathematics Research Notices, 2007.

    Google Scholar

    [11] J. M. Dudley, G. Genty and B. J. Eggleton, Harnessing and control of optical rogue waves in supercontinuum generation, Optics Express, 2008, 16(6), 3644. doi: 10.1364/OE.16.003644

    CrossRef Google Scholar

    [12] B. Guo and G. Yang, Some exact nontrivial global solutions with values in unit sphere for two-dimensional landau-lifshitz equations, Journal of Mathematical Physics, 2001, 42(11), 5223-5227. doi: 10.1063/1.1402955

    CrossRef Google Scholar

    [13] D. Huang, D. Li and H. Zhang, Explicit and exact travelling wave solutions for the generalized derivative Schrödinger equation, Chaos, Solitons and Fractals, 2007, 31, 586-593. doi: 10.1016/j.chaos.2005.10.007

    CrossRef Google Scholar

    [14] V. G. Ivancevic, Adaptive-wave alternative for the black-scholes option pricing model, 2009.

    Google Scholar

    [15] B. Jalali, P. Koonath, C. Ropers and D. R. Solli, Optical rogue waves, Nature, 2007, 450, 1054-1057. doi: 10.1038/nature06402

    CrossRef Google Scholar

    [16] V. V. Konotop, Y. V. Bludov and N. Akhmediev, Matter rogue waves, Phys. Rev. A, 2009, 80, 033610. doi: 10.1103/PhysRevA.80.033610

    CrossRef Google Scholar

    [17] C. Kosaka, K. Nakamura, S. Murugesh and M. Lakshmanan, Equatorial and related nonequilibrium states in magnetization dynamics of ferromagnets: Generalization of suhl's spin-wave instabilities, Physica D, 2005, 203, 233-248. doi: 10.1016/j.physd.2005.04.002

    CrossRef Google Scholar

    [18] M. Lakshmanan, The fascinating world of landau-lifshitz-gilbert equation: An overview, Philos. Trans. A Math. Phys. Eng., 2011, 369, 1280-1300.

    Google Scholar

    [19] L. D. Landau and E. M. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Reproduced in Collected Papers of L. D. Landau, Pergamon, New York, 2011, 101-114.

    Google Scholar

    [20] F. Merle, P. Raphaël and I. Radnianski, Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem, Invent. Math., 2013, 193(2), 249-365. doi: 10.1007/s00222-012-0427-y

    CrossRef Google Scholar

    [21] E. Mjølhus, Nonlinear Alfvén waves and the DNLS equation: Oblique aspects, Phys. Scr., 1989, 40, 227-237. doi: 10.1088/0031-8949/40/2/013

    CrossRef Google Scholar

    [22] K. Ohkuma, Y. H. Ichikawa and Y. Abe, Soliton propagation along optical fibers, Optics Letters, 1987, 12(7), 516. doi: 10.1364/OL.12.000516

    CrossRef Google Scholar

    [23] M. Onorato, D. Proment, G. Clauss and M. Klein, Rogue waves: from nonlinear Schrödinger breather solutions to sea-keeping test, PLoS One, 2013.

    Google Scholar

    [24] R. Parmentier, The New Superconducting Electronics, Springer, chapter Solitons and Long Josephson Junctions, 1993.

    Google Scholar

    [25] G. Perelman, Blow up dynamics for equivariant critical Schrödinger maps, Comm. Math. Phys., 2014, 330(1), 69-105. doi: 10.1007/s00220-014-1916-1

    CrossRef Google Scholar

    [26] V. M. Pérez-García, H. Michinel, J. I. Cirac, M. Lewenstein and P. Zoller, Dynamics of bose-einstein condensates: Variational solutions of the gross-pitaevskii equations, Phys. Rev. A, 1997, 56, 1424-1432. doi: 10.1103/PhysRevA.56.1424

    CrossRef Google Scholar

    [27] K. Porsezian, K. Tamizhmani and M. Lakshmanan, Geometrical equivalence of a deformed Heisenberg spin equation and the generalized nonlinear Schrödinger equation, Physics Letters A, 1987, 124(3), 159-160. doi: 10.1016/0375-9601(87)90243-X

    CrossRef Google Scholar

    [28] R. Radhakrishnan and M. Lakshmanan, Bright and dark soliton solutions to coupled nonlinear Schrödinger equations, Journal of Physics A: Mathematical and General, 1995, 28(9), 2683-2692. doi: 10.1088/0305-4470/28/9/025

    CrossRef Google Scholar

    [29] H. Rezazadeh, New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity, Optik, 2018, 167, 218-227. doi: 10.1016/j.ijleo.2018.04.026

    CrossRef Google Scholar

    [30] J. Rogel-Salazar, The gross-pitaevskii equation and bose-einstein condensates, European Journal of Physics, 2013, 34(2), 247-257. doi: 10.1088/0143-0807/34/2/247

    CrossRef Google Scholar

    [31] P. A. Ruprecht, M. J. Holland, K. Burnett and M. Edwards, Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms, Phys. Rev. A, 1995, 51, 4704-4711. doi: 10.1103/PhysRevA.51.4704

    CrossRef Google Scholar

    [32] T. Schneider and E. Stoll, Excitation spectrum of ferromagnetic Heisenberg chains, Journal of Applied Physics, 1982, 53, 1850. doi: 10.1063/1.330608

    CrossRef Google Scholar

    [33] L. Stenflo and M. Marklund, Rogue waves in the atmosphere, Journal of Plasma Physics, 2010, 76(3-4), 293-295. doi: 10.1017/S0022377809990481

    CrossRef Google Scholar

    [34] C. Sulem and P. L. Sulem, Focusing nonlinear schrödinger equation and wave-packet collapse, Nonlinear Analysis: Theory, Methods & Applications, Proceedings of the Second World Congress of Nonlinear Analysts, 1997, 30(2), 833-844.

    Google Scholar

    [35] H. Susanto, N. Karjanto, Zulkarnain, T. Nusantara and T. Widjanarko, Soliton and breather splitting on stargraphs from tricrystal josephson junctions, Symmetry, 2019, 11(2).

    Google Scholar

    [36] J. Tjon and J. Wright, Solitons in the continuous Heisenberg spin chain, Physical Review B, 1977, 15(7), 3470-3476. doi: 10.1103/PhysRevB.15.3470

    CrossRef Google Scholar

    [37] E. van Groesen, Andonowati and N. Karjanto, Displaced phase-amplitude variables for waves on finite background, Physics Letters A, 2006, 354(4), 312-319. doi: 10.1016/j.physleta.2006.02.037

    CrossRef Google Scholar

    [38] M. Wang, J. Zhang and X. Li, Solitary wave solutions of a generalized derivative nonlinear Schrödinger equation, Commun. Theor. Phys., 2008, 50, 39-42. doi: 10.1088/0253-6102/50/1/07

    CrossRef Google Scholar

    [39] B. Xia, Z. Qiao and J. Li, An integrable system with peakon, complex peakon, weak kink, and kink-peakon interactional solutions, Communications in Nonlinear Science and Numerical Simulation, 2018, 63, 292-306. doi: 10.1016/j.cnsns.2018.03.019

    CrossRef Google Scholar

    [40] Z. Yan, Financial rogue waves, Communications in Theoretical Physics, 2010, 54(5), 947-949. doi: 10.1088/0253-6102/54/5/31

    CrossRef Google Scholar

    [41] V. E. Zaltharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Journal of Experimental and Theoretical Physics, 1972, 34, 62-69.

    Google Scholar

    [42] D. Zhao, Y. Zhang, W. Lou and H. Luo, AKNS hierarchy, Darboux transformation and conservation laws of the 1D nonautonomous nonlinear Schrödinger equations, J. Math. Phys., 2011, 52(4), 043502-16. doi: 10.1063/1.3570301

    CrossRef Google Scholar

    [43] P. Zhong, S. Wang and S. Chen, Some periodic and blow-up solutions for landau-lifshitz equation, Modern Physics Letters A, 2011, 26(32), 2437-2452. doi: 10.1142/S0217732311036644

    CrossRef Google Scholar

    [44] P. Zhong, S. Wang and M. Zeng, Some exact blowup solutions to multidimensioanal schrödinger map equation on hyperbolic spaec and cone, Modern Physics Letters A, 2013, 28(10), 1350043. doi: 10.1142/S0217732313500430

    CrossRef Google Scholar

    [45] P. Zhong, R. Yang and G. Yang, Exact periodic and blow up solutions for 2D Ginzburg-Landau equation, Physics Letters A, 2008, 373(1), 19-22. doi: 10.1016/j.physleta.2008.10.078

    CrossRef Google Scholar

Figures(16)  /  Tables(5)

Article Metrics

Article views(1058) PDF downloads(192) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint