2021 Volume 11 Issue 5
Article Contents

Guenbo Hwang. ANALYTICAL SOLUTION FOR THE TWO-DIMENSIONAL LINEAR ADVECTION-DISPERSION EQUATION IN POROUS MEDIA VIA THE FOKAS METHOD[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2334-2354. doi: 10.11948/20200383
Citation: Guenbo Hwang. ANALYTICAL SOLUTION FOR THE TWO-DIMENSIONAL LINEAR ADVECTION-DISPERSION EQUATION IN POROUS MEDIA VIA THE FOKAS METHOD[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2334-2354. doi: 10.11948/20200383

ANALYTICAL SOLUTION FOR THE TWO-DIMENSIONAL LINEAR ADVECTION-DISPERSION EQUATION IN POROUS MEDIA VIA THE FOKAS METHOD

  • Corresponding author: Email address: ghwang@daegu.ac.kr (G. Hwang)
  • Fund Project: The author was supported by the Daegu University Research Grant 2020
  • We present the analytical solution of the two-dimensional linear advection-dispersion equation ($ 2 $-D LAD) in the quarter plane and the semi-infinite domain for two-dimensional solute transport in a porous medium. The governing equation includes terms describing advection, longitudinal and transverse dispersions and linear equilibrium adsorption. The analytical solution in terms of integrals in the complex plane is established by utilizing the unified transform method, also known as the Fokas method. The method hinges upon analysis of the divergence form of the governing equation and the so-called global relation, which is an algebraic relation coupling all known and unknown initial and boundary values. Particularly, the integral representation of the solution yields an accurate and fast numerical evaluation of the solution for the $ 2 $-D LAD equation. We demonstrate examples as an application of the developed solution and compare the analytical solution with numerical results.

    MSC: 35A22, 35K10, 35K57, 35Q35
  • 加载中
  • [1] V. Batu, A generalized two-dimensional analytical solution for hydrodynamic dispersion in bounded media With the first-type boundary condition at the source, Water Resour. Res., 1989, 25, 1125-1132. doi: 10.1029/WR025i006p01125

    CrossRef Google Scholar

    [2] G. Biondini and G. Hwang, Initial-boundary value problems for discrete evolution equations: discrete linear Schrödinger and integrable discrete nonlinear Schrödinger equations, Inv. Probl., 2008, 24, 065011(1-44).

    Google Scholar

    [3] J. Chen and C. Liu, Generalized analytical solution for advection-dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition, Hydro. Earth Syst. Sci., 2011, 15, 2471-2479. doi: 10.5194/hess-15-2471-2011

    CrossRef Google Scholar

    [4] J. Chen, J. Chen, C. Liu, C. Liang and C. Lin, Analytical solutions to two-dimensional advection-dispersion equation in cylindrical coordinates in finite domain subject to first- and third-type inlet boundary conditions, J. Hydrology., 2011, 405, 522-531. doi: 10.1016/j.jhydrol.2011.06.002

    CrossRef Google Scholar

    [5] M. J. Colbrook, Extending the unified transform: curvilinear polygons and variable coefficients PDEs, IMA J. Numer. Anal., 2020, 40, 976-1004. doi: 10.1093/imanum/dry085

    CrossRef Google Scholar

    [6] M. J. Colbrook, L. J. Ayton and A. S. Fokas, The unified transform for mixed boundary condition problems in unbounded domains, Proc. Roy, Soc. A., 2019, 475, 20180605. doi: 10.1098/rspa.2018.0605

    CrossRef Google Scholar

    [7] M. J. Colbrook, Z. I. Botev, K. Kuritz and S. MacNamara, Kernel density estimation with linked boundary conditions, Stud. Appl. Math., 2020, 145, 357-396. doi: 10.1111/sapm.12322

    CrossRef Google Scholar

    [8] M. J. Colbrook, N. Flyer and B. Fornberg, On the Fokas method for the solution of elliptic problems in both convex and non-convex polygonal domains, J. Comput. Phys., 2018, 374, 996-1016. doi: 10.1016/j.jcp.2018.08.005

    CrossRef Google Scholar

    [9] M. J. Colbrook, A. S. Fokas and P. Hashemzadeh, A hybrid analytical-numerical technique for elliptic PDEs, SIAM J. Sci. Comput., 2019, 41, A1066-A1090. doi: 10.1137/18M1217309

    CrossRef Google Scholar

    [10] F. R. J. de Barros, M. J. Colbrook and A. S. Fokas, A hybrid analytical-numerical method for solving advection-dispersion problems on a half -line, Int. J. Heat Mass Transf., 2019, 139, 482-491. doi: 10.1016/j.ijheatmasstransfer.2019.05.018

    CrossRef Google Scholar

    [11] G. Dagan, Theory of solute transport by groundwater, Ann. Rev. Fluid Mech., 1987, 19, 183-215. doi: 10.1146/annurev.fl.19.010187.001151

    CrossRef Google Scholar

    [12] B. Deconinck, B. Pelloni and N. E. Sheils, Non-steady-state heat conduction in composite walls, Proc. Roy, Soc. A., 2014, 470, 20130605. doi: 10.1098/rspa.2013.0605

    CrossRef Google Scholar

    [13] B. Deconinck, T. Trogdon and V. Vasan, The method of Fokas for solving linear partial differential equations, SIAM Review., 2014, 56, 159-186. doi: 10.1137/110821871

    CrossRef Google Scholar

    [14] A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London A., 1997, 453, 1411-1443. doi: 10.1098/rspa.1997.0077

    CrossRef Google Scholar

    [15] A. S. Fokas, On the integrability of certain linear and nonlinear partial differential equations, J. Math. Phys., 2000, 41, 4188-4237. doi: 10.1063/1.533339

    CrossRef Google Scholar

    [16] A. S. Fokas, Two dimensional linear PDEs in a convex polygon, Proc. Roy. Soc. London A., 2001, 457, 371-393. doi: 10.1098/rspa.2000.0671

    CrossRef Google Scholar

    [17] A. S. Fokas, Integrable nonlinear evolution equations on the half-line, Comm. Math. Phys., 2002, 230, 1-39. doi: 10.1007/s00220-002-0681-8

    CrossRef Google Scholar

    [18] A. S. Fokas, A new transform method for evolution partial differential equations, IMA J. Appl. Math., 2002, 67, 559-590. doi: 10.1093/imamat/67.6.559

    CrossRef Google Scholar

    [19] A. S. Fokas, A Unified Approach to Boundary Value Problems, (CBMS-NSF Regional Conference Series in Applied Mathematics) Philadelphia, SIAM., 2008.

    Google Scholar

    [20] A. S. Fokas and B. Pelloni, A transform method for linear evolution PDEs on a finite interval, IMA J. Appl. Math., 2005, 70, 564-587. doi: 10.1093/imamat/hxh047

    CrossRef Google Scholar

    [21] J. S. Pérez Guerrero, E. M. Pontedeiro, M. Th. van Genuchten and T. H. Skaggs, Analytical solution of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions, Chem. Eng. J., 2013, 221, 487-491. doi: 10.1016/j.cej.2013.01.095

    CrossRef Google Scholar

    [22] J. S. Pérez Guerrero, L. C. G. Pimentel, T. H. Skaggs and M. Th. van Genuchten, Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique, Int. J. Heat Mass Transf., 2009, 52, 3297-3304. doi: 10.1016/j.ijheatmasstransfer.2009.02.002

    CrossRef Google Scholar

    [23] J. S. Pérez Guerrero, L. C. G. Pimentel, T. H. Skaggs and M. Th. van Genuchten, Analytical solution for multi-species contaminant transport subject to sequential first-order decay reaction in finite media, Transport Porous Med., 2009, 80, 373-357. doi: 10.1007/s11242-009-9368-3

    CrossRef Google Scholar

    [24] M. T. van Genuchten and W. J. Alves, Analytical solutions of the one-dimensional convective-dispersive solute transport equation, Technical Bulletins 157268, United States Department of Agriculture, Economic Research Service, 1982.

    Google Scholar

    [25] G. Hwang, The modified Korteweg-de Vries equation on the quarter plane with t-periodic data, J. Nonlinear Math. Phys., 2017, 24, 620-634.

    Google Scholar

    [26] G. Hwang, Initial-boundary value problems for the one-dimensional linear advection-dispersion equation with decay, Z. Naturforshc. A., 2020, 75, 713-725. doi: 10.1515/zna-2020-0106

    CrossRef Google Scholar

    [27] G. Hwang, A unified approach to two-dimensional linear advection-dispersion equation in cylindrical coordinates on a finite domain, Int. J. Heat Mass Transf., 2021, 164, 120569. doi: 10.1016/j.ijheatmasstransfer.2020.120569

    CrossRef Google Scholar

    [28] G. Hwang and A. S. Fokas, The modified Korteweg-de Vries equation on the half-line with a sine-wave as Dirichlet datum, J. Nonlinear Math. Phys., 2013, 20, 135-157.

    Google Scholar

    [29] D. Mantzavinos and A. S. Fokas, The unified method for the heat equation: I. non-separable boundary conditions and non-local constraints in one dimension, Eur. J. App. Math., 2013, 24, 857-886. doi: 10.1017/S0956792513000223

    CrossRef Google Scholar

    [30] M. Massabó, R. Cianci and O. Paladino, Some analytical solutions for two-dimensional convection-dispersion equation in cylindrical geometry, Environ. Model. Softw., 2006, 21, 681-688. doi: 10.1016/j.envsoft.2004.12.003

    CrossRef Google Scholar

    [31] M. Massabó, R. Cianci and O. Paladino, An analytical solution of the advection dispersion equation in a bounded domain and its application to laboratory experiments, J. Appl. Math., 2011, 2011, 493014.

    Google Scholar

    [32] P. D. Miller and D. A. Smith, The diffusion equation with nonlocal data, J. Math. Anal. Appl. , 2018, 466, 1119-114. doi: 10.1016/j.jmaa.2018.05.064

    CrossRef Google Scholar

    [33] A. Mojtabi and M. O. Deville, One-dimensional linear advection-diffusion equation: Analytical and finite element solutions, Comput. Fluids., 2015, 107, 189-195. doi: 10.1016/j.compfluid.2014.11.006

    CrossRef Google Scholar

    [34] B. Moon and G. Hwang, The Korteweg-de Vries equation on the quarter plane with asymptotically t-periodic data via the Fokas method, Asy. Anal., 2018, 107, 115-133. doi: 10.3233/ASY-171452

    CrossRef Google Scholar

    [35] B. Moon and G. Hwang, Discrete linear evolution equations in a finite lattice, J. Differ. Equ. Appl., 2019, 25, 630-646. doi: 10.1080/10236198.2019.1613386

    CrossRef Google Scholar

    [36] A. Moranda, R. Cianci and O. Paladino, Analytical solutions of one-dimensional contaminant transport in soils with source production-decay, Soil Systems, 2018, 2(40), 1-16.

    Google Scholar

    [37] K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations, Cambridge University Press, 2005.

    Google Scholar

    [38] B. Pelloni and D. A. Pinotsis, The elliptic sine-Gordon equation in a half plane, Nonlinearity, 2010, 23, 77-88. doi: 10.1088/0951-7715/23/1/004

    CrossRef Google Scholar

    [39] B. Pelloni and D. A. Smith, Nonlocal and multipoint boundary value problems for linear evolution equations, Stud. Appl. Math., 2018, 141, 46-88. doi: 10.1111/sapm.12212

    CrossRef Google Scholar

    [40] D. Plümacher, M. Oberlack, Y. Wang and M. Smuda On a non-linear droplet oscillation theory via the unified method, Phys. Fluid., 2020, 32, 067104. doi: 10.1063/5.0007341

    CrossRef Google Scholar

    [41] N. E. Sheils and B. Deconinck, Heat conduction on the ring: interface problems with periodic boundary conditions, App. Math. Lett., 2014, 37, 107-111. doi: 10.1016/j.aml.2014.06.006

    CrossRef Google Scholar

    [42] D. Tang, E. O. Frind and E. A. Sudicky, Contaminant transport in fractured porous media: analytical solution for a single fracture, Water Resources Research, 1981, 17, 555-564. doi: 10.1029/WR017i003p00555

    CrossRef Google Scholar

Figures(6)

Article Metrics

Article views(2329) PDF downloads(253) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint