2021 Volume 11 Issue 4
Article Contents

Li Wei, Yuqian Zhou, Qian Liu. TRAVELING WAVE SOLUTIONS OF TWO TYPES OF GENERALIZED BREAKING SOLITON EQUATIONS[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 2151-2176. doi: 10.11948/20200373
Citation: Li Wei, Yuqian Zhou, Qian Liu. TRAVELING WAVE SOLUTIONS OF TWO TYPES OF GENERALIZED BREAKING SOLITON EQUATIONS[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 2151-2176. doi: 10.11948/20200373

TRAVELING WAVE SOLUTIONS OF TWO TYPES OF GENERALIZED BREAKING SOLITON EQUATIONS

  • Corresponding author: Email address: cs97zyq@aliyun.com(Y. Zhou) 
  • Fund Project: This work is supported by the Natural Science Foundation of China (Nos. 11301043, 11701480) and China Postdoctoral Science Foundation (No. 2016M602663)
  • In this paper, the bifurcation theory of dynamical system is applied to study traveling waves of two types of generalized breaking soliton (GBS) equations which include many famous partial differential equation models. Without any parameter constraints, we investigate their traveling wave systems in detail from the geometric point of view. Due to the existence of a two dimensional invariant manifold, all bounded and unbounded orbits are identified and studied in different parameter bifurcation sets. Furthermore, by calculating complicated elliptic integrals along these orbits, we obtain exact expressions of all possible single wave solutions of two types of GBS equations.

    MSC: 58F15, 58F17, 53C35
  • 加载中
  • [1] T. Alagesan, Y. Chung and K. Nakkeeran, Painlevé test for the certain (2+1)-dimensional nonlinear evolution equations, Chaos. Soliton. Fract., 2005, 26, 1203-1209.

    Google Scholar

    [2] M. O. Al-Amr, Exact solutions of the generalized (2+1)-dimensional nonlinear evolution equations via the modified simple equation method, Comput. Math. Appl., 2015, 69(5), 390-397. doi: 10.1016/j.camwa.2014.12.011

    CrossRef Google Scholar

    [3] M. S. Bruzón, M. L. Gandarias and C. Muriel, The Calogero-Bogoyavlenskii-Schiff equation in (2+1)-dimensions, Theor. Math. Phys., 2003, 137(1), 1367-1377. doi: 10.1023/A:1026040319977

    CrossRef Google Scholar

    [4] O. I. Bogoyavlenskii, Overturning solitons in new two-dimensional integrable equations, Math. USSR lzv., 1990, 34(2), 245. doi: 10.1070/IM1990v034n02ABEH000628

    CrossRef Google Scholar

    [5] R. Bai and W. Wo, Nonlocal symmetries and interaction solutions for the new (2+1) dimensional generalized breaking soliton equation, Pure. Appl. Math., 2017, 33(5), 536-544.

    Google Scholar

    [6] S. Chen and W. Ma, Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation, Comput. Math. Appl., 2018, 76(7), 1680-1685. doi: 10.1016/j.camwa.2018.07.019

    CrossRef Google Scholar

    [7] W. Cheng, B. Li and Y. Chen, Nonlocal symmetry and exact solutions of the (2+1)-dimensional breaking soliton equation, Commun. Nonlinear Sci. Numer. Simul., 2015, 29, 198-207. doi: 10.1016/j.cnsns.2015.05.007

    CrossRef Google Scholar

    [8] W. Cheng, B. Li and Y. Chen, Construction of soliton-cnoidal wave interaction solution for the (2+1)-dimensional breaking soliton equation, Commun. Theor. Phys., 2015, 63(5), 549-533. doi: 10.1088/0253-6102/63/5/549

    CrossRef Google Scholar

    [9] F. Calogero and A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral transform, Il Nuovo Cimento B., 1976, 32(2), 201-242. doi: 10.1007/BF02727634

    CrossRef Google Scholar

    [10] F. Calogero and A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral transform, Il Nuovo Cimento B., 1977, 39(1), 1-54.

    Google Scholar

    [11] M. T. Darvishi and M. Najafi, New application of EHTA for the generalized (2+1)-dimensional nonlinear evolution equations, Int. J. Comput. Math., 2010, 6(3), 132-138.

    Google Scholar

    [12] M. T. Darvishi and M. Najafi, Some exact solutions of the (2+1)-dimensional breaking soliton equation using the three-wave method, Int. J. Comput. Math., 2011, 5(7), 1031-1034.

    Google Scholar

    [13] Y. Gao and B. Tian, New family of overturning soliton solutions for a typical breaking soliton equation, Comput. Math. Appl., 1995, 30(12), 97-100. doi: 10.1016/0898-1221(95)00176-Y

    CrossRef Google Scholar

    [14] H. Hu, New position, negation and complexiton solutions for the Bogoyavlensky-Konoplechenko equation, Phys. Lett. A., 2009, 373(20), 1750-1753. doi: 10.1016/j.physleta.2009.03.022

    CrossRef Google Scholar

    [15] M. B. Hossen, H. O. Roshid and M. Z. Ali, Characteristics of the solitary waves and rogue waves with interaction phenomena in a (2+1)-dimensional Breaking Soliton equation, Phys. Lett. A., 2018, 382(19), 1268-1274. doi: 10.1016/j.physleta.2018.03.016

    CrossRef Google Scholar

    [16] M. B. Hossen, H. O. Roshid and M. Z. Ali, Modified Double Sub-equation Method for Finding Complexiton Solutions to the (1+1) Dimensional Nonlinear Evolution Equations, Int. J. Appl. Comput. Math., 2017, 3(3), 1-19. doi: 10.1007/s40819-017-0377-6

    CrossRef Google Scholar

    [17] M. S. Khatun, M. F. Hoque and M. A. Rahman, Multisoliton solutions, completely elastic collisions and non-elastic fusion phenomena of two PDEs, Pramana. J. Phys., 2017, 88(86).

    Google Scholar

    [18] X. Lü and J. Li, Integrability with symbolic computation on the Bogoyavlensky-Konoplechenko model: Bell-polynomial manipulation, bilinear representation, and Wronskian solution, Nonlinear Dyn., 2014, 77, 135-143. doi: 10.1007/s11071-014-1279-3

    CrossRef Google Scholar

    [19] W. Ma, R. Zhou and L. Gao, Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in (2+1)-dimensions, Mod. Phys. Lett. A., 2009, 24(21), 1677-1688. doi: 10.1142/S0217732309030096

    CrossRef Google Scholar

    [20] Y. Ma and B. Li, Interactions between soliton and rogue wave for a (2+1)-dimensional generalized breaking soliton system: Hidden rogue wave and hidden soliton, Comput. Math. Appl., 2019, 78(3), 827-839. doi: 10.1016/j.camwa.2019.03.002

    CrossRef Google Scholar

    [21] S. Ma, J. Fang and C. Zheng, New exact solutions of the (2+1)-dimensional breaking soliton system via an extended mapping method, Chaos. Soliton. Fract., 2009, 40, 210-214. doi: 10.1016/j.chaos.2007.07.043

    CrossRef Google Scholar

    [22] M. Naja, S. Arbabi and M. Naja, New application of sine-cosine method for the generalized (2+1)-dimensional nonlinear evolution equations, Int. J. Adv. Math. Sci., 2013, 1(2), 45-49.

    Google Scholar

    [23] E. Pelinovsky, E. Tobish and T. Talipova, Fourier spectrum of riemann waves, Scientific Committee., 2014, 2(1), 46.

    Google Scholar

    [24] H. O. Roshid, M. H. Khan and A. M. Wazwaz, Lump, multi-lump, cross kinky-lump and manifold periodic-soliton solutions for the (2+1)-D Calogero-Bogoyavlenskii-Schiff equation, Heliyon., 2020, 6(4), e03701. doi: 10.1016/j.heliyon.2020.e03701

    CrossRef Google Scholar

    [25] N. Rahman, H. O. Roshid, M. Alam and S. Zafor, Exact Traveling Wave Solutions of the Nonlinear (2+1)-Dimensional Typical Breaking Soliton Equation via Exp(ϕ(ξ))-Expansion Method, Int. J. Sci. E. T., 2014, 3(2), 93-97.

    Google Scholar

    [26] H. O. Roshid and W. Ma, Dynamics of mixed lump-solitary waves of an extended (2+1)-dimensional shallow water wave model, Phys. Lett. A., 2018, 382(45), 3262-3268. doi: 10.1016/j.physleta.2018.09.019

    CrossRef Google Scholar

    [27] H. O. Roshid, Multi-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation, Comput. Methods. Diff. Eqs., 2019, 7(1), 86-95.

    Google Scholar

    [28] T. Su, X. Geng and Y. Ma, Wronskian form of N-Soliton solution for the (2+1)-dimensional breaking soliton equation, Chin. Phys. Lett., 2007, 24(2), 305-307. doi: 10.1088/0256-307X/24/2/001

    CrossRef Google Scholar

    [29] B. Tian and Y. Gao, On the generalized tanh method for the (2+1)-dimensional breaking soliton equation, Mod. Phys. Lett. A., 1995, 10(38), 2937-2941. doi: 10.1142/S0217732395003070

    CrossRef Google Scholar

    [30] M. S. Ullah, H. O. Roshid, M. Z. Ali and Z. Rahman, Dynamical structures of multi-soliton solutions to the Bogoyavlenskii's breaking soliton equations, Eur. Phys. J. Plus., 2020, 135(3), 282. doi: 10.1140/epjp/s13360-020-00289-9

    CrossRef Google Scholar

    [31] A. M. Wazwaz, A new integrable equation constructed via combining the recursion operator of the Calogero-Bogoyavlenskii-Schiff (CBS) equations and its inverse operator, Appl. Math. Inf. Sci. 2017, 11(5), 1241-1246. doi: 10.18576/amis/110501

    CrossRef Google Scholar

    [32] A. M. Wazwaz, Integrable (2+1)-dimensional and (3+1)-dimensional breaking soliton equations, Phys. Scr., 2010, 81(3), 035005. doi: 10.1088/0031-8949/81/03/035005

    CrossRef Google Scholar

    [33] A. M. Wazwaz, Abundant solutions of various physical features for the (2+1)-dimensional modified Kdv-Calogero-Bogoyavlenskii-Schiff equation, Nonlinear Dyn., 2017, 89(3), 1727-1732. doi: 10.1007/s11071-017-3547-5

    CrossRef Google Scholar

    [34] A. M. Wazwaz, A new integrable (2+1)-dimensional generalized breaking soliton equation: N-soliton solutions and traveling wave solutions, Commun. Theor. Phys., 2016, 66(4), 385-388. doi: 10.1088/0253-6102/66/4/385

    CrossRef Google Scholar

    [35] G. Xu, Integrability of a (2+1)-dimensional generalized breaking soliton equation, App. Math. Lett., 2015, 50, 16-22. doi: 10.1016/j.aml.2015.05.015

    CrossRef Google Scholar

    [36] T. Xia and S. Xiong, Exact solutions of (2+1)-dimensional Bogoyavlenskii's breaking soliton equation with symbolic computation, Comput. Math. Appl., 2010, 60, 919-923. doi: 10.1016/j.camwa.2010.05.037

    CrossRef Google Scholar

    [37] D. Xian, Symmetry reduction and new non-traveling wave solutions of (2+1)-dimensional breaking soliton equation, Commun. Nonlinear Sci. Numer. Simul., 2010, 15, 2061-2065. doi: 10.1016/j.cnsns.2009.08.013

    CrossRef Google Scholar

    [38] X. Yan, S. Tian and M. Dong, Characteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized breaking soliton equation, Comput. Math. Appl., 2018, 76(1), 179-186. doi: 10.1016/j.camwa.2018.04.013

    CrossRef Google Scholar

    [39] Z. Yan and H. Zhang, Constructing families of soliton-like solutions to a (2+1)-dimensional breaking soliton equation using symbolic computation, Comput. Math. Appl., 2002, 44, 1439-1444. doi: 10.1016/S0898-1221(02)00268-7

    CrossRef Google Scholar

    [40] Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, American Mathematical Society, Providence, RI, USA, 1992.

    Google Scholar

    [41] Y. Zhang, Y. Song and L. Cheng, Exact solutions and Painlevé analysis of a new (2+1)-dimensional generalized KdV equation, Nonlinear Dyn., 2012, 68, 445-458. doi: 10.1007/s11071-011-0228-7

    CrossRef Google Scholar

    [42] Z. Zhao and B. Han, Quasiperiodic wave solutions of a (2+1)-dimensional generalized breaking soliton equation via bilinear Bäcklund transformation, Eur. Phys. J. Plus., 2016, 131(5), 1-16.

    Google Scholar

Figures(2)  /  Tables(2)

Article Metrics

Article views(1824) PDF downloads(215) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint