2021 Volume 11 Issue 3
Article Contents

Muhammad Zainul Abidin, Jiecheng Chen. GLOBAL WELL-POSEDNESS OF THE GENERALIZED ROTATING MAGNETOHYDRODYNAMICS EQUATIONS IN VARIABLE EXPONENT FOURIER-BESOV SPACES[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1177-1190. doi: 10.11948/20200030
Citation: Muhammad Zainul Abidin, Jiecheng Chen. GLOBAL WELL-POSEDNESS OF THE GENERALIZED ROTATING MAGNETOHYDRODYNAMICS EQUATIONS IN VARIABLE EXPONENT FOURIER-BESOV SPACES[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1177-1190. doi: 10.11948/20200030

GLOBAL WELL-POSEDNESS OF THE GENERALIZED ROTATING MAGNETOHYDRODYNAMICS EQUATIONS IN VARIABLE EXPONENT FOURIER-BESOV SPACES

  • Corresponding author: Email: mzainulabidin@zjnu.edu.cn, zainbs359@gmail.com (M. Z. Abidin) 
  • Fund Project: The authors were supported by Zhejiang Normal University Postdoctoral Research fund under grant No. ZC304020909 and NSF of China (No. 12071437, 10271437)
  • In this paper we study the three dimensional incompressible generalized rotating magnetohydrodynamics equations. By using littlewood-Paley decomposition, we obtain the global well-posedness result for small initial data belong to critical variable exponent Fourier-Besov spaces $ \mathcal{F}\dot{\mathscr{B}}_{p(\cdot), q}^{4-2\alpha-\frac{3}{p(\cdot)}} $. This paper extends some recent work about generalized Navier-Stokes equations.

    MSC: 35Q30, 35Q86, 42B37
  • 加载中
  • [1] E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Archive for Rational Mechanics and Analysis, 2002, 164(3), 213-259. doi: 10.1007/s00205-002-0208-7

    CrossRef Google Scholar

    [2] A. Almeida and P. Hästö, Besov spaces with variable smoothness and integrability, Journal of Functional Analysis, 2010, 258(5), 1628-1655. doi: 10.1016/j.jfa.2009.09.012

    CrossRef Google Scholar

    [3] A. Babin, A. Mahalov and B. Nicolaenko, Regularity and integrability of 3d euler and Navier-Stokes equations for rotating fluids, Asymptotic Analysis, 1997, 15(2), 103-150. doi: 10.3233/ASY-1997-15201

    CrossRef Google Scholar

    [4] A. Babin, A. Mahalov and B. Nicolaenko, 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity, Indiana University Mathematics Journal, 2001, 1-35.

    Google Scholar

    [5] A. Biswas and D. Swanson, Gevrey regularity of solutions to the 3-D Navier-Stokes equations with weighted $\ell_p$ initial data, Indiana University mathematics journal, 2007, 1157-1188.

    Google Scholar

    [6] J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, Journal of Functional Analysis, 2008, 255(9), 2233-2247. doi: 10.1016/j.jfa.2008.07.008

    CrossRef Google Scholar

    [7] J. Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Mathematical geophysics: An introduction to rotating fluids and the Navier-Stokes equations, 32, Oxford University Press on Demand, 2006.

    Google Scholar

    [8] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM journal on Applied Mathematics, 2006, 66(4), 1383-1406. doi: 10.1137/050624522

    CrossRef Google Scholar

    [9] D. Cruz-Uribe, L. Diening and P. Hästö, The maximal operator on weighted variable Lebesgue spaces, Fractional Calculus and Applied Analysis, 2011, 14(3), 361-374. doi: 10.2478/s13540-011-0023-7

    CrossRef Google Scholar

    [10] D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces: Foundations and harmonic analysis, Springer Science & Business Media, 2013.

    Google Scholar

    [11] C. Deng and X. Yao, Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in f- $\alpha$, r, Dynamical Systems, 2014, 34(2), 437-459.

    Google Scholar

    [12] L. Diening, P. Harjulehto, P. Hästö and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Springer, 2011.

    Google Scholar

    [13] H. Dong, D. Li et al., Optimal local smoothing and analyticity rate estimates for the generalized Navier-Stokes equations, Communications in Mathematical Sciences, 2009, 7(1), 67-80. doi: 10.4310/CMS.2009.v7.n1.a3

    CrossRef Google Scholar

    [14] G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Archive for Rational Mechanics and Analysis, 1972, 46(4), 241-279. doi: 10.1007/BF00250512

    CrossRef Google Scholar

    [15] A. El Baraka and M. Toumlilin, Global well-posedness and decay results for 3d generalized magneto-hydrodynamic equations in critical Fourier-Besov-Morrey spaces, Electronic Journal of Differential Equations, 2017, 2017(65), 1-20.

    Google Scholar

    [16] A. El Baraka and M. Toumlilin, Global well-posedness for fractional Navier-Stokes equations in critical Fourier-Besov-Morrey spaces, Moroccan Journal of Pure and Applied Analysis, 2017, 3(1), 1-13. doi: 10.1515/mjpaa-2017-0001

    CrossRef Google Scholar

    [17] X. Fan, Global c1, $\alpha$ regularity for variable exponent elliptic equations in divergence form, Journal of Differential Equations, 2007, 235(2), 397-417. doi: 10.1016/j.jde.2007.01.008

    CrossRef Google Scholar

    [18] H. Fujita and T. Kato, On the Navier-Stokes initial value problem. i, Archive for rational mechanics and analysis, 1964, 16(4), 269-315. doi: 10.1007/BF00276188

    CrossRef Google Scholar

    [19] M. Hieber and Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Mathematische Zeitschrift, 2010, 265(2), 481-491. doi: 10.1007/s00209-009-0525-8

    CrossRef Google Scholar

    [20] M. Hieber and Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Mathematische Zeitschrift, 2010, 265(2), 481-491. doi: 10.1007/s00209-009-0525-8

    CrossRef Google Scholar

    [21] T. Iwabuchi and R. Takada, Global solutions for the Navier-Stokes equations in the rotational framework, Mathematische Annalen, 2013, 357(2), 727-741. doi: 10.1007/s00208-013-0923-4

    CrossRef Google Scholar

    [22] T. Iwabuchi and R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, Journal of Functional Analysis, 2014, 267(5), 1321-1337. doi: 10.1016/j.jfa.2014.05.022

    CrossRef Google Scholar

    [23] T. Kato, Strongl p-solutions of the Navier-Stokes equation inr m, with applications to weak solutions, Mathematische Zeitschrift, 1984, 187(4), 471-480. doi: 10.1007/BF01174182

    CrossRef Google Scholar

    [24] T. Kato and H. Fujita, On the nonstationary Navier-Stokes system, Rendiconti del Seminario Matematico della Università di Padova, 1962, 32, 243-260.

    Google Scholar

    [25] H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Advances in Mathematics, 2001, 157(1), 22-35. doi: 10.1006/aima.2000.1937

    CrossRef Google Scholar

    [26] P. Konieczny and T. Yoneda, On dispersive effect of the coriolis force for the stationary Navier-Stokes equations, Journal of Differential Equations, 2011, 250(10), 3859-3873. doi: 10.1016/j.jde.2011.01.003

    CrossRef Google Scholar

    [27] Z. Lei, On axially symmetric incompressible magnetohydrodynamics in three dimensions, Journal of Differential Equations, 2015, 259(7), 3202-3215. doi: 10.1016/j.jde.2015.04.017

    CrossRef Google Scholar

    [28] Z. Lei and F. H. Lin, Global mild solutions of Navier-Stokes equations, Communications on Pure and Applied Mathematics, 2011, 64(9), 1297-1304. doi: 10.1002/cpa.20361

    CrossRef Google Scholar

    [29] P. Li and Z. Zhai, Well-posedness and regularity of generalized Navier-Stokes equations in some critical Q-spaces, Journal of functional analysis, 2010, 259(10), 2457-2519. doi: 10.1016/j.jfa.2010.07.013

    CrossRef Google Scholar

    [30] J. L. Lions, Quelques méthodes de résolution des problemes aux limites non linéaires, 1969.

    Google Scholar

    [31] H. Nakano, Topology and linear topological spaces, 3, Maruzen Company, 1951.

    Google Scholar

    [32] S. Ru and M. Z. Abidin, Global well-posedness of the incompressible fractional Navier-Stokes equations in Fourier-Besov spaces with variable exponents, Computers & Mathematics with Applications, 2019, 77(4), 1082-1090.

    Google Scholar

    [33] M. Ruzicka, Electrorheological fluids: modeling and mathematical theory, Springer Science & Business Media, 2000.

    Google Scholar

    [34] L. W.A. J, Banach function spaces, Ph. D. thesis, Delft Technical University, 1955.

    Google Scholar

    [35] W. Wang and G. Wu, Global mild solution of the generalized Navier-Stokes equations with the Coriolis force, Applied Mathematics Letters, 2018, 76, 181-186. doi: 10.1016/j.aml.2017.09.001

    CrossRef Google Scholar

    [36] W. Wang and G. Wu, Global mild solution of the generalized Navier-Stokes equations with the Coriolis force, Applied Mathematics Letters, 2018, 76, 181-186. doi: 10.1016/j.aml.2017.09.001

    CrossRef Google Scholar

    [37] Y. Wang and K. Wang, Global well-posedness of the three dimensional magnetohydrodynamics equations, Nonlinear Analysis: Real World Applications, 2014, 17, 245-251. doi: 10.1016/j.nonrwa.2013.12.002

    CrossRef Google Scholar

    [38] J. Wu, Generalized MHD equations, Journal of Differential Equations, 2003, 195(2), 284-312. doi: 10.1016/j.jde.2003.07.007

    CrossRef Google Scholar

    [39] J. Wu, Lower bounds for an integral involving fractional laplacians and the generalized Navier-Stokes equations in Besov spaces, Communications in mathematical physics, 2006, 263(3), 803-831. doi: 10.1007/s00220-005-1483-6

    CrossRef Google Scholar

    [40] J. Wu, Regularity criteria for the generalized MHD equations, Communications in Partial Differential Equations, 2008, 33(2), 285-306. doi: 10.1080/03605300701382530

    CrossRef Google Scholar

    [41] J. Xiao, Homothetic variant of fractional Sobolev space with application to Navier-Stokes system, Dynamics of Partial Differential Equations, 2007, 4(3), 227-245. doi: 10.4310/DPDE.2007.v4.n3.a2

    CrossRef Google Scholar

    [42] Z. Zhai, Well-posedness for fractional Navier-Stokes equations in critical spaces close to $\dot{B}_{\infty, \infty}^ {-(2\beta-1)}(\mathbb{R}^ n)$, arXiv preprint arXiv: 0906.5140, 2009.

    Google Scholar

Article Metrics

Article views(2338) PDF downloads(271) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint