2018 Volume 8 Issue 1
Article Contents

Dong Cheng, Kit Ian Kou, Yong Hui Xia. A UNIFIED ANALYSIS OF LINEAR QUATERNION DYNAMIC EQUATIONS ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2018, 8(1): 172-201. doi: 10.11948/2018.172
Citation: Dong Cheng, Kit Ian Kou, Yong Hui Xia. A UNIFIED ANALYSIS OF LINEAR QUATERNION DYNAMIC EQUATIONS ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2018, 8(1): 172-201. doi: 10.11948/2018.172

A UNIFIED ANALYSIS OF LINEAR QUATERNION DYNAMIC EQUATIONS ON TIME SCALES

  • Fund Project:
  • Over the last years, considerable attention has been paid to the role of the quaternion differential equations (QDEs) which extend the ordinary differential equations. The theory of QDEs was recently well established and has wide applications in physics and life science. This paper establishes a systematic frame work for the theory of linear quaternion dynamic equations on time scales (QDETS), which can be applied to wave phenomena modeling, fluid dynamics and filter design. The algebraic structure of the solutions to the QDETS is actually a left-or right-module, not a linear vector space. On the non-commutativity of the quaternion algebra, many concepts and properties of the classical dynamic equations on time scales (DETS) can not be applied. They should be redefined accordingly. Using q-determinant, a novel definition of Wronskian is introduced under the framework of quaternions which is different from the standard one in DETS. Liouville formula for QDETS is also analyzed. Upon these, the solutions to the linear QDETS are established. The Putzer's algorithms to evaluate the fundamental solution matrix for homogeneous QDETS are presented. Furthermore, the variation of constants formula to solve the nonhomogeneous QDETs is given. Some concrete examples are provided to illustrate the feasibility of the proposed algorithms.
    MSC: 34N05;34A30;39A06;20G20
  • 加载中
  • [1] S. L. Adler, Quaternionic quantum mechanics and quantum fields, Oxford Univ. Press, 1995.

    Google Scholar

    [2] R. Agarwal, M. Bohner, D. O'Regan and A. Peterson, Dynamic equations on time scales:a survey, J. Comput. Appl. Math., 2002, 141(1), 1-26.

    Google Scholar

    [3] R. P. Agarwal, M. Bohner and P. J. Wong, Sturm-Liouville eigenvalue problems on time scales, Appl. Math. Comput., 1999, 99(2), 153-166.

    Google Scholar

    [4] C. D. Ahlbrandt, M. Bohner and J. Ridenhour, Hamiltonian systems on time scales, J. Math. Anal. Appl., 2000, 250(2), 561-578.

    Google Scholar

    [5] S. L. Alder, Quaternionic quantum field theory, Commun. Math. Phys., 1986, 104(4), 611-656.

    Google Scholar

    [6] H. Aslaksen, Quaternionic determinants, Math. Intell., 1996, 18(3), 57-65.

    Google Scholar

    [7] F. M. Atici, D. C. Biles and A. Lebedinsky, An application of time scales to economics, Math. Comput. Model., 2006, 43(7), 718-726.

    Google Scholar

    [8] A. Baker, Right eigenvalues for quaternionic matrices:a topological approach, Linear Alg. Appl., 1999, 286(1), 303-309.

    Google Scholar

    [9] M. Bohner and G. S. Guseinov, The laplace transform on isolated time scales, Comput. Math. Appl., 2010, 60(6), 1536-1547.

    Google Scholar

    [10] M. Bohner and A. Peterson, Dynamic Equations on Time Scales:An Introduction With Applications, Springer Science & Business Media, 2001.

    Google Scholar

    [11] M. Bohner and A. C. Peterson, Advances in dynamic equations on time scales, Springer Science & Business Media, 2002.

    Google Scholar

    [12] J. Campos and J. Mawhin, Periodic solutions of quaternionic-valued ordinary differential equations, Ann. Mat. Pura Appl., 2006, 185, S109-S127.

    Google Scholar

    [13] L. X. Chen, Definition of determinant and cramer solutions over the quaternion field, Acta Mathematica Sinica, 1991, 7(2), 171-180.

    Google Scholar

    [14] J. C. Chou, Quaternion kinematic and dynamic differential equations, IEEE Trans. Robot. Autom., 1992, 8(1), 53-64.

    Google Scholar

    [15] V. Cormani, Liouville's formula on time scales, Dynamic Systems and Applications, 2003, 12(1/2), 79-86.

    Google Scholar

    [16] F. Farid, Q.-W. Wang and F. Zhang, On the eigenvalues of quaternion matrices, Lin. Multilin. Alg., 2011, 59(4), 451-473.

    Google Scholar

    [17] A. Gasull, J. Llibre and X. Zhang, One-dimensional quaternion homogeneous polynomial differential equations, J. Math. Phys., 2009, 50(8), 082705.

    Google Scholar

    [18] S. Georgiev and J. Morais, An introduction to the Hilger quaternion numbers, in AIP Conference Proceedings, 1558, 2013, 550-553.

    Google Scholar

    [19] J. Gibbon, A quaternionic structure in the three-dimensional euler and ideal magneto-hydrodynamics equations, Physica D:Nonlinear Phenomena, 2002, 166(1), 17-28.

    Google Scholar

    [20] J. D. Gibbon, D. D. Holm, R. M. Kerr and I. Roulstone, Quaternions and particle dynamics in the euler fluid equations, Nonlinearity, 2006, 19(8), 1969.

    Google Scholar

    [21] S. Gupta, Linear quaternion equations with application to spacecraft attitude propagation, in Aerospace Conference, 1998 IEEE, 1, IEEE, 1998, 69-76.

    Google Scholar

    [22] S. Hilger, Ein Maβkettenkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universität Würzburg, 1988.

    Google Scholar

    [23] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 1990, 18(1-2), 18-56.

    Google Scholar

    [24] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge university press, 1985.

    Google Scholar

    [25] D. Janovská and G. Opfer, A note on the computation of all zeros of simple quaternionic polynomials, SIAM J. Numer. Anal., 2010, 48(1), 244-256.

    Google Scholar

    [26] I. Klapper and H. Qian, Remarks on discrete and continuous large-scale models of DNA dynamics, Biophysical journal, 1998, 74(5), 2504-2514.

    Google Scholar

    [27] K. I. Kou, W. K. Liu and Y. H. Xia, Linear quaternion differential equations:Basic theory and fundamental results Ⅱ, arXiv preprint arXiv:1602.01660, 2016.

    Google Scholar

    [28] K. I. Kou and Y. H. Xia, Linear quaternion differential equations:Basic theory and fundamental results I, arXiv preprint arXiv:1510.02224, 2015.

    Google Scholar

    [29] R. J. Marks, I. A. Gravagne and J. M. Davis, A generalized fourier transform and convolution on time scales, J. Math. Anal. Appl., 2008, 340(2), 901-919.

    Google Scholar

    [30] D. Metaxas and G. Tsechpenakis, Dynamic data driven coupling of continuous and discrete methods for 3D tracking, in Computational Science-ICCS 2005, Springer, 2005, 712-720.

    Google Scholar

    [31] A. Peterson and B. Thompson, Henstock-Kurzweil delta and nabla integrals, J. Math. Anal. Appl., 2006, 323(1), 162-178.

    Google Scholar

    [32] A. Pogorui* and M. Shapiro, On the structure of the set of zeros of quaternionic polynomials, Complex Variables, Theory and Application:An International Journal, 2004, 49(6), 379-389.

    Google Scholar

    [33] L. Rodman, Topics in quaternion linear algebra, Princeton University Press, 2014.

    Google Scholar

    [34] R. Ser^odio, E. Pereira and J. Vitória, Computing the zeros of quaternion polynomials, Comput. Math. Appl., 2001, 42(8), 1229-1237.

    Google Scholar

    [35] R. Ser^odio and L.-S. Siu, Zeros of quaternion polynomials, Appl. Math. Lett., 2001, 14(2), 237-239.

    Google Scholar

    [36] J. Sola, Quaternion kinematics for the error-state KF, Laboratoire d'Analyse et d'Architecture des Systemes-Centre national de la recherche scientifique (LAAS-CNRS), Toulouse, France, Tech. Rep, 2012.

    Google Scholar

    [37] A. Sudbery, Quaternionic analysis, in Mathematical Proceedings of the Cambridge Philosophical Society, 85, Cambridge Univ Press, 1979, 199-225.

    Google Scholar

    [38] Q.-W. Wang, The general solution to a system of real quaternion matrix equations, Comput. Math. Appl., 2005, 49(5), 665-675.

    Google Scholar

    [39] P. Wilczyński, Quaternionic-valued ordinary differential equations. the riccati equation, J. Differ. Equ., 2009, 247(7), 2163-2187.

    Google Scholar

    [40] P. Wilczyński, Quaternionic-valued ordinary differential equations ii. coinciding sectors, J. Differ. Equ., 2012, 252(8), 4503-4528.

    Google Scholar

    [41] Y. H. Xia, H. Huang and K. I. Kou, An algorithm for solving linear nonhomogeneous quaternion-valued differential equations, arXiv preprint arXiv:1602.08713, 2016.

    Google Scholar

    [42] F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl., 1997, 251, 21-57.

    Google Scholar

    [43] X. Zhang, Global structure of quaternion polynomial differential equations, Commun. Math. Phys., 2011, 303(2), 301-316.

    Google Scholar

Article Metrics

Article views(2112) PDF downloads(814) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint