伊朗黄土高原表土磁性特征与古气候指示意义

魏海涛, 陈发虎. 伊朗黄土高原表土磁性特征与古气候指示意义[J]. 第四纪研究, 2022, 42(1): 261-271. doi: 10.11928/j.issn.1001-7410.2022.01.21
引用本文: 魏海涛, 陈发虎. 伊朗黄土高原表土磁性特征与古气候指示意义[J]. 第四纪研究, 2022, 42(1): 261-271. doi: 10.11928/j.issn.1001-7410.2022.01.21
魏海涛, 陈发虎. 伊朗黄土高原表土磁性特征与古气候指示意义[J]. 第四纪研究, 2022, 42(1): 261-271. doi: 10.11928/j.issn.1001-7410.2022.01.21 WEI Haitao, CHEN Fahu. Magnetic characteristics of surface samples from NE Iran and its paleoenvironmental implications[J]. Quaternary Sciences, 2022, 42(1): 261-271. doi: 10.11928/j.issn.1001-7410.2022.01.21
Citation: WEI Haitao, CHEN Fahu. Magnetic characteristics of surface samples from NE Iran and its paleoenvironmental implications[J]. Quaternary Sciences, 2022, 42(1): 261-271. doi: 10.11928/j.issn.1001-7410.2022.01.21

伊朗黄土高原表土磁性特征与古气候指示意义

  • 基金项目:

    国家自然科学基金项目(批准号: 41402145)、国家重点研究发展计划项目(批准号: 2018YFA0606401)和科技部第二次青藏高原综合考察研究项目(批准号: 2019QZKK0602)共同资助

详细信息
    作者简介:

    魏海涛, 男, 39岁, 副教授, 干旱区环境变化研究, E-mail: htwei@lzu.edu.cn

  • 中图分类号: P318;P467

Magnetic characteristics of surface samples from NE Iran and its paleoenvironmental implications

  • 全球变化研究中的现代过程研究越来越成为定量重建工作的先决前提, 而由于如黄土等气候记录载体沉积分布的全球性与沉积环境的多样性, 更需要就具体的研究区进行有针对性的现代过程工作以最大程度地保证重建工作的可靠性。西起地中海、东至帕米尔的广大区域是丝路文明演化的关键地区, 其过去气候变化也是了解北半球中纬度气候演化与机制的重要拼图。本研究即采集位于该区之里海东南缘的伊朗黄土沉积区域的现代表土, 并联系气候要素考察其磁性特征的空间变化。结果显示主要分布于冬春季节的年均降水其变化控制了亚铁磁性矿物的空间分异, 包括次生超细颗粒含量变化与磁赤铁矿化程度, 典型的磁学参数如百分频率磁化率值的变化可以定量记录年均降水值的变化。结合相关关系函数, 可以为该区过去降水变化的定量重建提供准备并为进一步理解区域气候系统演化与机制提供支持。

  • 加载中
  • 图 1 

    伊朗黄土高原区表土样点示意图

    Figure 1. 

    Map showing sampling sites in the Iranian Loess Plateau and adjacent region

    图 2 

    表土样品磁滞回线

    Figure 2. 

    Hysteresis loops of regional surface samples

    图 3 

    表土样品磁性特征的相关性变化图

    Figure 3. 

    Correlations between magnetic properties for regional surface samples

    图 4 

    表土样品低温饱和剩磁的热退磁曲线

    Figure 4. 

    Thermal demagnetization of low temperature saturation magnetization for representative samples

    图 5 

    表土磁化率、百分频率磁化率与区域年均降水量相关变化图

    Figure 5. 

    Climatic dependence of magnetic susceptibility and frequency-dependent magnetic susceptibility for regional surface samples

    表 1 

    伊朗黄土高原表土磁性特征

    Table 1. 

    Magnetic properties of surface samples in the Iranian Loess Plateau

    Lat. (°N) Long. (°E) MAP (mm) MAT (℃) Alt. (m) χ(×10-8 m3/kg) χfd%(%) Magnetic Properties
    χlf χhf χ1 χ2 χ3 χfd12% χfd23% χfd13% Bc (mT) Bcr (mT) Ms (×10-3Am2/kg) Mrs (×10-3 Am2/kg) Mrs/Ms Bcr/Bc
    SS01 37°44.208′ 54°56.404′ 274 18.1 54 28.40 27.88 31.10 30.72 29.89 1.23 2.70 3.89 9.84 36.97 32.16 3.49 0.11 3.76
    SS02 37°38.311′ 54°58.212′ 278 18.1 86 33.78 33.51 37.21 36.67 35.70 1.45 2.62 4.04 9.74 36.08 36.99 4.11 0.11 3.71
    SS03 37°37.298′ 55°01.991′ 305 18.1 118 32.05 31.31 34.84 34.37 33.43 1.35 2.74 4.06 9.52 34.85 34.95 3.91 0.11 3.66
    SS04 37°34.998′ 55°04.662′ 328 18.2 81 31.36 30.87 33.66 33.21 32.38 1.33 2.50 3.79 9.43 36.53 38.66 4.20 0.11 3.87
    SS05 37°31.801′ 55°04.304′ 336 18.2 68 32.28 31.52 34.57 34.13 33.16 1.28 2.85 4.09 9.80 36.98 34.85 4.01 0.12 3.77
    SS06 37°30.342′ 55°07.431′ 369 18.2 95 32.91 32.29 36.02 35.37 34.37 1.81 2.83 4.59 9.94 37.18 38.73 4.39 0.11 3.74
    SS07 37°30.122′ 55°09.914′ 392 18.2 96 29.89 28.85 32.46 32.03 31.08 1.32 2.96 4.24 10.01 36.95 35.16 4.16 0.12 3.69
    SS08 37°27.757′ 55°11.822′ 447 18.2 126 33.95 33.19 37.43 36.81 35.61 1.66 3.25 4.86 9.33 36.17 38.95 4.46 0.11 3.88
    SS09 37°27.076′ 55°12.847′ 462 18.2 106 30.32 30.19 33.67 33.06 32.00 1.79 3.23 4.96 9.38 36.54 34.82 4.06 0.12 3.90
    SS10 37°24.733′ 55°13.887′ 487 18.1 76 45.01 43.05 48.59 47.05 44.75 3.18 4.88 7.90 9.30 31.41 41.61 5.31 0.13 3.38
    SS11 37°23.826′ 55°14.040′ 492 18.1 76 50.07 48.22 54.66 52.82 50.13 3.36 5.10 8.29 9.05 30.27 43.72 5.78 0.13 3.34
    SS12 37°23.250′ 55°16.959′ 541 18.3 72 56.05 53.00 61.19 58.77 55.24 3.96 6.00 9.72 8.91 28.08 39.35 5.72 0.15 3.15
    SS13 37°22.464′ 55°18.593′ 577 18.2 74 41.62 39.73 45.16 43.85 41.83 2.91 4.60 7.38 9.01 31.87 38.80 4.69 0.12 3.54
    SS14 37°19.919′ 55°20.818′ 652 18.0 83 52.61 50.00 57.28 55.06 52.09 3.88 5.40 9.07 9.17 29.53 39.94 5.54 0.14 3.22
    SS15 37°18.140′ 55°21.189′ 691 17.9 105 40.75 38.77 43.86 42.40 40.32 3.33 4.90 8.07 9.85 33.73 33.91 4.78 0.14 3.43
    SS16 37°18.419′ 55°21.762′ 694 17.9 102 36.62 35.96 40.66 39.38 37.46 3.15 4.88 7.88 9.94 34.33 30.33 4.44 0.15 3.45
    SS17 37°17.659′ 55°22.618′ 735 17.8 126 35.44 34.22 38.75 37.31 35.40 3.71 5.12 8.64 10.26 34.91 26.63 4.13 0.15 3.40
    SS18 37°17.371′ 55°23.011′ 752 17.7 135 29.57 29.05 32.37 31.44 30.14 2.89 4.14 6.91 11.01 36.41 22.14 3.35 0.15 3.31
    SS19 37°15.188′ 55°28.055′ 807 17.1 300 31.92 31.14 34.75 33.82 32.41 2.68 4.17 6.74 10.65 38.54 30.40 4.19 0.14 3.62
    SS20 37°15.835′ 55°24.890′ 816 17.5 186 39.79 38.92 44.02 42.85 40.99 2.65 4.33 6.87 9.88 35.32 37.36 4.81 0.13 3.58
    下载: 导出CSV
  • [1]

    Chen F, Xu Q, Chen J, et al. East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Reports, 2015, 5 (1): 1-11. doi: 10.9734/JSRR/2015/14076

    [2]

    Gao X, Hao Q, Wang L, et al. The different climatic response of pedogenic hematite and ferrimagnetic minerals: Evidence from particle-sized modern soils over the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2018, 179: 69-86. doi: 10.1016/j.quascirev.2017.11.011.

    [3]

    Ilvonen L, López-Sáez J A, Holmström L, et al. Quantitative reconstruction of precipitation changes in the Iberian Peninsula during the Late Pleistocene and the Holocene[J]. Climate of the Past Discussions, 2019: 1-30. doi: 10.5194/cp-2019-33.

    [4]

    Larrasoaña J C, Roberts A P, Liu Q, et al. Source-to-sink magnetic properties of NE Saharan dust in Eastern Mediterranean marine sediments: Review and paleoenvironmental implications[J]. Frontiers in Earth Science, 2015, 3 (19). doi: 10.3389/feart.2015.00019.

    [5]

    Chen J, Lü F, Huang X, et al. A novel procedure for pollen-based quantitative paleoclimate reconstructions and its application in China[J]. Science China: Earth Sciences, 2017, 60 (11): 2059-2066. doi: 10.1007/s11430-017-9095-1

    [6]

    Maxbauer D P, Feinberg J M, Fox D L, et al. Response of pedogenic magnetite to changing vegetation in soils developed under uniform climate, topography, and parent material[J]. Scientific Reports, 2017, 7 (1): 17575. doi: 10.1038/s41598-017-17722-2

    [7]

    Hu P, Heslop D, Rossel R A V, et al. Continental-scale magnetic properties of surficial Australian soils[J]. Earth-Science Reviews, 2020, 203: 103028. doi: 10.1016/j.earscirev.2019.103028.

    [8]

    Ravi S, D'Odorico P, Breshears D D, et al. Aeolian processes and the biosphere[J]. Reviews of Geophysics, 2011, 49. doi: 10.1029/2010RG000328.

    [9]

    Liu Q, Sun Y, Qiang X, et al. Characterizing magnetic mineral assemblages of surface sediments from major Asian dust sources and implications for the Chinese loess magnetism[J]. Earth, Planets and Space, 2015, 67 (1): 1-17. doi: 10.1186/s40623-014-0143-5

    [10]

    吕厚远, 韩家懋. 中国现代土壤磁化率分析及其古气候意义[J]. 中国科学(B辑), 1994, 24 (12): 1290-1297.

    Lü Houyuan, Han Jiamao, Wu Naiqin, et al. Magnetic susceptibility of the modern soils in China and paleoclimatic significance[J]. Science in China(Series B), 1994, 24 (12): 1290-1297.

    [11]

    Porter S C, Hallet B, Wu X H, et al. Dependence of near-surface magnetic susceptibility on dust accumulation rate and precipitation on the Chinese Loess Plateau[J]. Quaternary Research, 2001, 55 (3): 271-283. doi: 10.1006/qres.2001.2224

    [12]

    綦昕瑶, 刘秀铭, 马明明, 等. 印度河流域平原表土的成因及其意义[J]. 第四纪研究, 2021, 41 (6): 1654-1667. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.13

    Qi Xinyao, Liu Xiuming, Ma Mingming, et al. The genesis of plain topsoil on the Indus River Basin and its significance[J]. Quaternary Sciences, 2021, 41 (6): 1654-1667. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.13

    [13]

    Wei H, Wang L, Azarmdel H, et al. Quartz OSL dating of loess deposits since the Late Glacial in the Southeast of Caspian Sea[J]. Quaternary International, 2021, 583: 39-47. doi: 10.1016/j.quaint.2020.04.042.

    [14]

    Frechen M, Kehl M, Rolf C, et al. Loess chronology of the Caspian lowland in Northern Iran[J]. Quaternary International, 2009, 198 (1-2): 220-233. doi: 10.1016/j.quaint.2008.12.012

    [15]

    Wang X, Wei H, Khormali F, et al. Grain-size distribution of Pleistocene loess deposits in northern Iran and its palaeoclimatic implications[J]. Quaternary International, 2017, 429: 41-51. doi: 10.1016/j.quaint.2016.01.058.

    [16]

    陈发虎, 董广辉, 陈建徽, 等. 亚洲中部干旱区气候变化与丝路文明变迁研究: 进展与问题[J]. 地球科学进展, 2019, 34 (6): 561-572. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201906004.htm

    Chen Fahu, Dong Guanghui, Chen Jianhui, et al. Climate change and Silk Road civilization evolution in arid Central Asia: Progress and issues[J]. Advances in Earth Science, 2019, 34 (6): 561-572. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201906004.htm

    [17]

    Sharifi A, Pourmand A, Canuel E A, et al. Abrupt climate variability since the last deglaciation based on a high-resolution, multi-proxy peat record from NW Iran: The hand that rocked the Cradle of Civilization?[J]. Quaternary Science Reviews, 2015, 123: 215-230. doi: 10.1016/j.quascirev.2015.07.006.

    [18]

    Pye K. The nature, origin and accumulation of loess[J]. Quaternary Science Reviews, 1995, 14 (7-8): 653-667. doi: 10.1016/0277-3791(95)00047-X

    [19]

    刘东生, 等. 黄土与环境[M]. 北京: 科学出版社, 1985: 1-412.

    Liu Tungsheng, et al. Loess and Environment[M]. Beijing: Science Press, 1985: 1-412.

    [20]

    Pokorný J, Pokorný P, Suza P, et al. The Earth's Magnetic Interior[M]. Heidelberg: Springer, 2011: 293-301.

    [21]

    Hrouda F, Pokorný J. Extremely high demands for measurement accuracy in precise determination of frequency-dependent magnetic susceptibility of rocks and soils[J]. Studia Geophysica et Geodaetica, 2011, 55 (4): 667-681. doi: 10.1007/s11200-010-0079-6

    [22]

    徐新文, 强小科, 符超峰, 等. Bartington MS2和Kappabridge MFK 1-FA不同频率的磁化率在黄土, 红粘土和湖相沉积物中的应用[J]. 地球物理学报, 2012, 55 (1): 197-206. doi: 10.6038/j.issn.0001-5733.2012.01.019

    Xu Xinwen, Qiang Xiaoke, Fu Chaofeng, et al. Characteristics of frequency-dependent magnetic susceptibility in Bartington MS2 and Kappabridge MFK 1-FA, and its application in loess-paleosol, red clay and lacustrine sediments[J]. Chinese Journal of Geophysics, 2012, 55 (1): 197-206. doi: 10.6038/j.issn.0001-5733.2012.01.019

    [23]

    Chen F, Bloemendal J, Feng Z, et al. East Asian monsoon variations during Oxygen Isotope Stage 5: Evidence from the northwestern margin of the Chinese Loess Plateau[J]. Quaternary Science Reviews, 1999, 18 (8-9): 1127-1135. doi: 10.1016/S0277-3791(98)00047-X

    [24]

    Liu Q, Deng C, Torrent J, et al. Review of recent developments in mineral magnetism of the Chinese loess[J]. Quaternary Science Reviews, 2007, 26 (3-4): 368-385. doi: 10.1016/j.quascirev.2006.08.004

    [25]

    Dunlop D J, Özdemir Ö. Rock Magnetism: Fundamentals and Frontiers[M]. Cambridge: Cambridge University Press, 1997: 1-573.

    [26]

    Evans M, Heller F. Environmental Magnetism: Principles and Applications of Enviromagnetics[M]. San Diego: Academic Press, 2003: 1-299.

    [27]

    Deng C L, Zhu R X, Verosub K L, et al. Mineral magnetic properties of loess/paleosol couplets of the central Loess Plateau of China over the last 1.2 Myr[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B01103): 1-13. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200412001005.htm

    [28]

    Roberts A P, Cui Y, Verosub K L. Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B9): 17909-17924. doi: 10.1029/95JB00672

    [29]

    Florindo F, Zhu R, Guo B, et al. Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese Loess Plateau[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B1): 645-659. doi: 10.1029/1998JB900001

    [30]

    Hunt C P, Banerjee S K, Han J M, et al. Rock-magnetic proxies of climate-change in the loess-paleosol sequences of the western Loess Plateau of China[J]. Geophysical Journal International, 1995, 123 (1): 232-244. doi: 10.1111/j.1365-246X.1995.tb06672.x

    [31]

    刘秀铭, 刘东生, Heller F, 等. 黄土频率磁化率与古气候冷暖变换[J]. 第四纪研究, 1990, (1): 42-50. doi: 10.3321/j.issn:1001-7410.1990.01.005

    Liu Xiuming, Liu Dongsheng, Heller F, et al. Frequency-dependent susceptibility of loess and Quaternary paleoclimate[J]. Quaternary Sciences, 1990, (1): 42-50. doi: 10.3321/j.issn:1001-7410.1990.01.005

    [32]

    Dunlop D J. Theory and application of the Day Plot(Mrs/Ms versus Hcr/Hc)2. Application to data for rocks, sediments, and soils[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B3). doi: 10.1029/2001JB000486.

    [33]

    Ozdemir O, Dunlop D J, Moskowitz B M. The effect of oxidation on the verwey transition in magnetite[J]. Geophysical Research Letters, 1993, 20 (16): 1671-1674. doi: 10.1029/93GL01483

    [34]

    Verwey E. Electronic conduction of magnetite(Fe3O4)and its transition point at low temperatures[J]. Nature, 1939, 144 (3642): 327-328. http://www.nature.com/nature/journal/v144/n3642/pdf/144327b0.pdf

    [35]

    Guyodo Y, LaPara T M, Anschutz A J, et al. Rock magnetic, chemical and bacterial community analysis of a modern soil from Nebraska[J]. Earth and Planetary Science Letters, 2006, 251 (1-2): 168-178. doi: 10.1016/j.epsl.2006.09.005

    [36]

    Ozdemir O, Dunlop D J. Hallmarks of maghemitization in low-temperature remanence cycling of partially oxidized magnetite nanoparticles[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B2). doi: 10.1029/2009JB006756.

    [37]

    Liu Q, Banerjee S, Jackson M, et al. Determining the climatic boundary between the Chinese loess and palaeosol: Evidence from aeolian coarse-grained magnetite[J]. Geophysical Journal International, 2004, 156 (2): 267-274. doi: 10.1111/j.1365-246X.2003.02148.x

    [38]

    Balsam W L, Ellwood B B, Ji J, et al. Magnetic susceptibility as a proxy for rainfall: Worldwide data from tropical and temperate climate[J]. Quaternary Science Reviews, 2011, 30 (19-20): 2732-2744. doi: 10.1016/j.quascirev.2011.06.002

    [39]

    Zhou L P, Oldfield F, Wintle A G, et al. Partly pedogenic origin of magnetic variations in Chinese loess[J]. Nature, 1990, 346 (6286): 737-739. doi: 10.1038/346737a0

    [40]

    邓成龙, 刘青松, 潘永信, 等. 中国黄土环境磁学[J]. 第四纪研究, 2007, 27 (2): 193-209. doi: 10.3321/j.issn:1001-7410.2007.02.005

    Deng Chenglong, Liu Qingsong, Pan Yongxin, et al. Environmental magnetism of Chinese loess-paleosol sequences[J]. Quaternary Sciences, 2007, 27 (2): 193-209. doi: 10.3321/j.issn:1001-7410.2007.02.005

    [41]

    王博, 杨丽雯, 贾佳. 黄土沉积物原生组分磁化率与风力的物质分选[J]. 第四纪研究, 2021, 41 (6): 1645-1653. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.12

    Wang Bo, Yang Liwen, Jia Jia. The magnetic susceptibility of the unaltered aeolian dust and wind sorting[J]. Quaternary Sciences, 2021, 41 (6): 1645-1653. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.12

    [42]

    Bege't J E, Stone D B, Hawkins D B. Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the Late Quaternary[J]. Geology, 1990, 18 (1): 40-43. doi: 10.1130/0091-7613(1990)018<0040:PFOMSV>2.3.CO;2

    [43]

    Carter-Stiglitz B, Banerjee S K, Gourlan A, et al. A multi-proxy study of Argentina loess: Marine oxygen isotope stage 4 and 5 environmental record from pedogenic hematite[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239 (1): 45-62. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0031018206000265&originContentFamily=serial&_origin=article&_ts=1473839082&md5=9f7402e818b36f6ad737e70036823489

    [44]

    魏海涛, Banerjee Subir K, 夏敦胜, 等. 天山北麓黄土环境磁学特征及其古气候意义[J]. 地球物理学报, 2013, 56 (1): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201301016.htm

    Wei Haitao, Banerjee Subir K, Xia Dunsheng, et al. Magnetic characteristics of loess-paleosol sequences on the north slope of the Tianshan Mountains, Northwestern China and their paleoclimatic implications[J]. Chinese Journal of Geophysics, 2013, 56 (1): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201301016.htm

    [45]

    夏敦胜, 陈发虎, 马剑英, 等. 新疆伊犁地区典型黄土磁学特征及其环境意义初探[J]. 第四纪研究, 2010, 30 (5): 902-910. doi: 10.3969/j.issn.1001-7410.2010.05.07

    Xia Dunsheng, Chen Fahu, Ma Jianying et al. Magnetic characteristics of loess in the Ili area and their environmental implication[J]. Quaternary Sciences, 2010, 30 (5): 902-910. doi: 10.3969/j.issn.1001-7410.2010.05.07

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1719
  • PDF下载数:  168
  • 施引文献:  0
出版历程
收稿日期:  2021-08-17
修回日期:  2021-11-19
刊出日期:  2022-01-30

目录