Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 23120085-9    https://doi.org/10.11896/cldb.23120085
  电化学能源材料与器件 |
钠离子存储器件中界面效应作用机制研究
魏一帆1,2, 夏会聪1,2,*, 张佳楠1,2,*
1 郑州大学材料科学与工程学院,郑州 450001
2 郑州市能源催化功能材料重点实验室,郑州 450001
Mechanism of Interfacial Effects in Sodium-ion Storage Devices
WEI Yifan1,2, XIA Huicong1,2,*, ZHANG Jianan1,2,*
1 College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
2 Key Laboratory of Advanced Energy Catalytic and Functional Material Preparation of Zhengzhou City, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 38863KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 可充电钠离子电池被视为下一代高效能二次电池的最佳候选之一。电池充放电过程中电极表面及电极与电解质界面行为均对其性能有较大依赖性。因此,分析界面效应的特性对打造高能量密度、长期稳定的大型储能系统至关重要。虽然电极材料的特性研究已相当深入,但对钠离子电池界面效应的稳定性和高效性的研究仍显不足。现有研究成果尚未能为系统性结论提供充分的理论依据。本文回顾了钠离子储存设备中界面效应机制的研究现状,涵盖了电极材料内部的异质界面和固态电解质界面,从理论上分析了层间插入、转化反应和合金化过程中的界面效应,以及这些效应如何影响电池的整体性能。本文旨在为优化电极材料内部的异质界面及固态电解质结构提供理论基础,以提高钠离子电池的性能。同时,本文总结了几种现有的界面效应机制,并综述了目前界面效应研究面临的挑战与机遇,对其在该领域的未来发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏一帆
夏会聪
张佳楠
关键词:  钠离子存储  界面效应  固态电解质中间相    
Abstract: Rechargeable sodium-ion batteries (SIBs) are the next generation of secondary batteries. During charging and discharging, the behavior of sodium ion (Na+) storage at the electrode interface and electrode-electrolyte interface determines the performance of SIBs, which plays an important role in the high energy density and long cycle stability required by the large-scale energy storage battery system. Although electrode materials have been extensively studied, there is very little work on the construction of stable and efficient SIBs interfaces compared to the large number of electrode materials studied. Although there are a few researches and explorations on the mechanism of interfacial effect, the researches on the regulation strategies of interfacial effect are still in the initial stage, and the results obtained are not in-depth enough to draw systematic conclusions. Here in, the mechanism of interfacial effect in Na+ storage process is reviewed. The interface is divided into heterogeneous interface of electrode material, solid electrolyte interphase and cathode electrolyte interphase. The mechanism of interfacial effect in intercalation reaction, transformation reaction and alloy reaction and its influence on the overall battery performance were summarized. This provides guidance for the optimization of electrode structure and electrode-electrolyte interface structure, which is very important for the performance optimization of SIBs. In addition, it analyzes the challenges in SIB interfacial effects research and suggests several promising methods and opportunities for advancing the understanding of interfacial effects mechanisms.
Key words:  sodium-ion storage    interfacial effect    solid electrolyte interphase
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  O646.54  
基金资助: 国家自然科学基金联合重点基金(U22A20107);河南省超级科技研发计划联合基金(222301420001);郑州大学杰出创新团队(32320275);河南省高等学校重点科研项目(24A150041);国家资助博士后研究人员计划资助(GZC20232382);河南省科技攻关项目(242102240106)
通讯作者:  *夏会聪,博士,郑州大学材料科学与工程学院直聘研究员。主要从事多孔功能碳基电化学储存机制研究、新能源器件关键材料设计研究,包括钠离子电池、金属燃料电池等。以第一作者及通信作者身份在国际权威期刊Angew.Chem.Energy Environ.Sci.Nano Res.Energy Mater.等发表学术论文13篇。hcxia9209@zzu.edu.cn
张佳楠,郑州大学材料科学与工程学院教授、博士研究生导师,英国皇家化学会会士。主要从事燃料电池、金属空气电池等能源转换装置中电催化剂的设计、构筑和应用研究。迄今为止,以通信作者身份在Nat.Commun.、Angew.Chem.Int.Ed.、Adv.Mater.、Adv.Energy Mater.、ACS Nano、Adv.Funct.Mater.、Energy Environ.Sci.等期刊发表论文70余篇;主持国家自然科学基金5项;担任中国化学会青委员会委员、中国化学会女委员会委员。入选2022年全球前2%顶尖科学家。zjn@zzu.edu.cn   
作者简介:  魏一帆,2020年6月于东北林业大学获得工学学士学位。现为郑州大学材料科学与工程学院硕士研究生,在张佳楠教授的指导下进行研究。目前主要研究领域为过渡金属碳基催化剂电化学催化。以第一作者身份在国际权威期刊Adv.Energy Mater.、Nano Res.、Energy Mater.等发表学术论文3篇。
引用本文:    
魏一帆, 夏会聪, 张佳楠. 钠离子存储器件中界面效应作用机制研究[J]. 材料导报, 2024, 38(8): 23120085-9.
WEI Yifan, XIA Huicong, ZHANG Jianan. Mechanism of Interfacial Effects in Sodium-ion Storage Devices. Materials Reports, 2024, 38(8): 23120085-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23120085  或          http://www.mater-rep.com/CN/Y2024/V38/I8/23120085
1 Zuo W, Innocenti A, Zarrabeitia M, et al. Accounts of Chemical Research, 2023, 56, 284.
2 Deng J, Gong Q, Ye H, et al. ACS Nano, 2018, 12, 1829.
3 Lee M, Kim M S, Oh J M, et al. ACS Nano, 2023, 17, 3019.
4 Wei Y, Xia H, Lan H, et al. Advanced Energy Materials, 2023, 14, e2303011.
5 Liu B, Wang L, Zhu Y, et al. ACS Nano, 2022, 16, 12900.
6 Pu B, Liu Y, Bai J, et al. ACS Nano, 2022, 16, 18746.
7 Chu Y, Zhang J, Zhang Y, et al. Advanced Materials, 2023, 35, e2212186.
8 Peng B, Lv Z, Xu S, et al. Advanced Materials, 2022, 34, e2200863.
9 Tang L, Meng X, Deng D, et al. Advanced Materials, 2019, 31, e1901996.
10 Meng W, Dang Z, Li D, et al. Advanced Energy Materials, 2022, 12, 2201531.
11 Usiskin R, Maier J. Advanced Energy Materials, 2020, 11, 2001455.
12 Yang C, Xin S, Mai L Q, et al. Advanced Energy Materials, 2021, 11, 2000974.
13 Lyu X, Jia Y, Mao X, et al. Advanced Materials, 2020, 32, e2003493.
14 Cui P, Zhao L, Long Y, et al. Angewandte Chemie International Edition, 2023, 62, e202218269.
15 Liu X, Zhao Z, Liang J, et al. Angewandte Chemie International Edition, 2023, 62, e202302134.
16 He D, Zhang L, He D, et al. Nature Communications, 2016, 7, 12362.
17 Zhao J, Ji S, Guo C, et al. Nature Catalysis, 2021, 4, 523.
18 Liu S, Li C, Zachman M J, et al. Nature Energy, 2022, 7, 652.
19 Bu L Z, Zhang N, Guo S J, et al. Science, 2016, 354, 1410.
20 Liang S Z, Wang X Y, Qi R X, et al. Advanced Functional Materials, 2022, 32, 2201675.
21 Lv Z, Peng B, Lv X, et al. Advanced Functional Materials, 2023, 34, 2214370.
22 Meng W, Dang Z, Li D, et al. Advanced Functional Materials, 2022, 32, 2204364.
23 Wang K, Sun F, Wang H, et al. Advanced Functional Materials, 2022, 32, 2203725.
24 Jin J, Liu Y, Zhao X, et al. Angewandte Chemie International Edition, 2023, 62, e202219230.
25 Zhao Y, Liu Q, Zhao X, et al. Materials Today, 2023, 62, 271.
26 Osman S, Peng C, Shen J, et al. Nano Energy, 2022, 100, 107481.
27 Song P, Wei S, Di J, et al. Nano Research, 2022, 16, 4874.
28 Wang Y, Mao J, Meng X, et al. Chemical Reviews, 2019, 119, 1806.
29 Li J, Chang X, Huang T, et al. Energy Storage Materials, 2023, 54, 724.
30 Qin D, Wang L, Zeng X, et al. Energy Storage Materials, 2023, 54, 498.
31 Xue S, Shang J, Pu X, et al. Energy Storage Materials, 2023, 55, 33.
32 Liu H, Zeng W, Yang Y, et al. Journal of Materials Chemistry A, 2021, 9, 1260.
33 Hou R, Guo S, Zhou H. Advanced Energy Materials, 2023, 14, 2300053.
34 Huang P, Ying H, Zhang S, et al. Advanced Energy Materials, 2022, 12, 2202052.
35 Ye H, Wang L, Deng S, et al. Advanced Energy Materials, 2016, 7, 1601602.
36 Hao Z Q, Shi X Y, Yang Z, et al. Advanced Functional Materials, 2022, 32, 2208093.
37 Zhang J, Gai J, Song K, et al. Cell Reports Physical Science, 2022, 3, 100868.
38 Hu X, Zhang Q, Gong N, et al. Energy Storage Materials, 2022, 50, 802.
39 Miao Y, Xiao Y, Hu S, et al. Nano Research, 2022, 16, 2347.
40 Eshetu G G, Elia G A, Armand M, et al. Advanced Energy Materials, 2020, 10, e2000093.
41 Song J, Xiao B, Lin Y, et al. Advanced Energy Materials, 2018, 8, 1703082.
42 Xu K. Journal of Power Sources, 2023, 559, 232652.
43 Lu S Y, Wu H, Hou J W, et al. Nano Research, 2020, 13, 2289.
44 Xia H, Zan L, Yuan P, et al. Angewandte Chemie International Edition, 2023, 62, e202218282.
45 Cheng J, Niu Z, Zhao Z, et al. Advanced Energy Materials, 2022, 13, 2203248.
46 Dong C, Shao H, Zhou Y, et al. Advanced Functional Materials, 2022, 33, 2211864.
47 Xiao S, Li X, Zhang W, et al. ACS Nano, 2021, 15, 13307.
48 Liang X, Yu T Y, Ryu H H, et al. Energy Storage Materials, 2022, 47, 515.
49 Zhao A, Yuan T, Li P, et al. Nano Energy, 2022, 91, 106680.
50 Xia H, Zan L, Qu G, et al. Energy & Environmental Science, 2022, 15, 771.
51 Yang M, Chang X, Wang L, et al. Advanced Materials, 2023, 35, e2208705.
52 Tang Z, Wang H, Wu P F, et al. Angewandte Chemie International Edition, 2022, 61, e202200475.
53 Lu Z, Geng C, Yang H, et al. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2210203119.
54 Niu Y B, Guo Y J, Yin Y X, et al. Advanced Materials, 2020, 32, e2001419.
55 Hu X, Qiu M, Liu Y, et al. Advanced Energy Materials, 2022, 12, 2202318.
56 Gbadamasi S, Mohiuddin M, Krishnamurthi V, et al. Chemical Society Reviews, 2021, 50, 4684.
57 Chen H, Sun N, Wang Y, et al. Energy Storage Materials, 2023, 56, 532.
58 Yang Z, He J, Lai W H, et al. Angewandte Chemie International Edition, 2021, 60, 27086.
59 Sun N, Qiu J, Xu B. Advanced Energy Materials, 2022, 12, 2200715.
60 Peng J, Zhang W, Hu Z, et al. Nano Letters, 2022, 22, 1302.
61 Niu Y B, Yin Y X, Wang W P, et al. CCS Chemistry, 2020, 2, 589.
62 Yin X P, Zhao Y F, Zhang J J. Journal of Electrochemistry, 2023, 29, 2204301.
63 Xia H C, Yuan P F, Zan L X, et al. Nano Research, 2021, 15, 7154.
64 Jing L, Sun J, Sun C, et al. Nano Research, 2022, 16, 473.
65 Yin J Y, Hai P Q, Gao Y, et al. Nano Research, 2022, 16, 4941.
66 Song M, Yi Z, Xu R, et al. Energy Storage Materials, 2022, 51, 620.
67 Sang J, Zhang X, Liu K, et al. Advanced Functional Materials, 2023, 34, 2211640.
68 Zhang J, Song K, Mi L, et al. Journal of Physical Chemistry Letters, 2020, 11, 1435.
69 Liu T, Yang Y, Cao S, et al. Advanced Materials, 2023, 35, e2207752.
70 Wang C H, Wang D, Ma X, et al. Advanced Functional Materials, 2022, 32, 2204687.
71 Song K, Wang X, Xie Z, et al. Angewandte Chemie International Edition, 2023, 62, e202216450.
72 Wang J W, Liu X H, Mao S X, et al. Nano Letters, 2012, 12, 5897.
73 Liang Y, Song N, Zhang Z, et al. Advanced Materials, 2022, 34, e2202673.
74 Zhu J, Deng D. Journal of Physical Chemistry C, 2015, 119, 21323.
75 Liu Z M, Sun H R, Wang X J, et al. Energy Storage Materials, 2022, 48, 90.
76 Peng J, Zhang B, Hua W, et al. Angewandte Chemie International Edition, 2023, 62, e202215865.
77 Ma J, Zheng S, Chi L, et al. Advanced Materials, 2022, 34, e2205569.
78 Liu X S, Zhong G M, Xiao Z M, et al. Nano Energy, 2020, 76, 104997.
79 Hu W, Peng Y, Wei Y, et al. The Journal of Physical Chemistry C, 2023, 127, 4465.
[1] 门海蛟, 宋健尧, 黄秉经, 李建昌. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21): 22030317-23.
[2] 姚诗言, 曾立艳, 刘军. 高性能锂金属电池负极结构设计及界面强化研究进展[J]. 材料导报, 2022, 36(16): 21010216-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed