Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 23080249-17    https://doi.org/10.11896/cldb.23080249
  电化学能源材料与器件 |
金属基磷化物纳米材料制备与电催化应用研究进展
刘卉1, 杨牛娃1,2, 马梦圆1,2, 田少囡1,*, 张玉1, 杨军1,2,*
1 中国科学院过程工程研究所介科学与工程全国重点实验室,北京 100190
2 中国科学院大学材料科学与光电技术研究中心,北京 100049
Research Advances of Metal-based Phosphide Nanomaterials Toward Electrocatalytic Applications
LIU Hui1, YANG Niuwa1,2, MA Mengyuan1,2, TIAN Shaonan1,*, ZHANG Yu1, YANG Jun1,2,*
1 State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 65121KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 处于纳米尺度的磷化物及其与贵金属构成的复合材料具有独特的物理和化学性质,在电催化领域有广泛应用。例如,在甲醇电催化氧化反应中,由于磷(P)比金属铂(Pt)或钯(Pd)等具有更大的电负性,金属原子的外层电子被P吸引而偏向P原子,从而间接提高了Pt或Pd 对CO类中间产物的耐受性;在电解水析氢反应中,P可以作为质子受体,增强H+在金属上的吸附,从而促进析氢反应;在电解水析氧反应中,金属基磷化物容易被氧化成氧化物和氢氧化物,从而形成氧化物/氢氧化物-磷化物界面,进一步促进析氧反应。纳米颗粒的催化性能很大程度上取决于催化剂的结构、组分、组分之间的相互作用以及活性位点的电子结构,因此,对金属基磷化物基纳米复合材料的这些性质进行合理调控是提升其电催化性能的关键。本文所综述的材料范围包含金属基磷化物本身及其与贵金属构成的纳米复合材料,首先概括介绍金属基磷化物基纳米复合材料的合成方法和表征技术,进而阐述如何利用复合材料中晶格应变和电子耦合等物理效应提升电催化活性和稳定性。最后,围绕金属基磷化物基纳米复合材料电催化性能进一步提升的问题,对其未来合成策略和发展进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘卉
杨牛娃
马梦圆
田少囡
张玉
杨军
关键词:  金属基磷化物  纳米复合材料  电催化  甲醇氧化反应  析氢反应  析氧反应    
Abstract: Nanometer sized metal phosphides and their nanocomposites with noble metals have unique physical/chemical properties that have been found wide applications in electrocatalysis. For instance, in methanol oxidation reaction, the shift of electron clouds from noble metals, e.g. Pt and Pd, to the phosphor (P) due to larger electronegativity of the latter would enhance thetolerance of noble metals for the CO-like interme-diates produced during methanol oxidation. Also, in hydrogen evolution reaction (HER) of electrocatalytic water splitting, the P element in the phosphide-based nanocomposites could strengthen the H+ adsorption by serving as proton acceptor, thus promoting the HER. In addition, in oxygen evolution reaction (OER), the metal phosphides could be easily transformed into metal oxides/hydroxides for forming metal phosphide-metal oxide/hydroxide interfaces that is capable to boost the OER. It is well known that the catalytic performance of a catalyst strongly depends on its structure, components and their interactions as well as the electronic configuration of the active sites. In this context, rational regulation of the above-mentioned properties of metal phosphide-based nanocomposites is of necessity to improve their electrocatalytic performance. It is noteworthy that the materials in this review include metal phosphides and their nanocomposites with different nobles. We would firstly introduce the synthesis and characterization of metal phosphide-based nanocomposites, and subsequently, we focus on reviewing recent advances and challenges in making use of the lattice strain effect and electronic coupling effect to boost the performance of metal phosphide-based nanocomposites in typical electrochemical reactions. Eventually, regarding further improvement in elecrtocatalytic performance, we make some perspectives on the future synthetic strategies and development of the metal phosphide-based nanocomposites.
Key words:  metal-based phosphide    nanocomposite    electrocatalysis    methanol oxidation reaction    hydrogen evolution reaction    oxygen evolution reaction
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  O646  
基金资助: 国家自然科学基金(22075290;22272179);北京自然科学基金(Z200012)
通讯作者:  *田少囡,2017年博士毕业于北京工业大学,中国科学院过程工程研究所高级工程师,过程所模块化平台公共仪器中心主任,硕士研究生导师,入选中国科学院稳定支持青年团队计划;作为课题负责人致力于含重金属有机固废循环利用技术研发和环境风险分析评价等相关研究工作。sntian@ipe.ac.cn
杨军,中国科学院过程工程研究所研究员,中国科学院大学材料科学与光电技术学院岗位教授、博士研究生导师。2006年于新加坡国立大学获得博士学位,2006—2007年先后在波士顿大学、多伦多大学进行博士后研究,2007—2010年在新加坡生物工程与纳米技术研究院从事研究工作,2010年回国工作,创建能源转化与环境净化材料课题组,主要从事贵金属基异质结构纳米材料的构筑及其在能源转化和环境净化方面的应用研究。jyang@ipe.ac.cn   
作者简介:  刘卉,中国科学院过程工程研究所副研究员、硕士研究生导师。2010年于北京科技大学获得硕士学位,2014年于中国科学院过程工程研究所获得博士学位,主要研究方向是新型纳米复合材料的合成以及用于能量转换和环境修复。
引用本文:    
刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
LIU Hui, YANG Niuwa, MA Mengyuan, TIAN Shaonan, ZHANG Yu, YANG Jun. Research Advances of Metal-based Phosphide Nanomaterials Toward Electrocatalytic Applications. Materials Reports, 2024, 38(8): 23080249-17.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080249  或          http://www.mater-rep.com/CN/Y2024/V38/I8/23080249
1 Wang C, Ding T, Sun Y, et al. Nanoscale, 2015, 7(45), 19241.
2 Pan Y, Liu Y, Zhao J, et al. Journal of Materials Chemistry A, 2015, 3(4), 1656.
3 Xiao J Q, Wu X N, Wang Q, et al. Chemistry Bulletin, 2021, 84(3), 215(in Chinese)
肖洁琼, 吴小宁, 王倩, 等. 化学通报, 2021, 84(3), 215.
4 Corbridge D E C. Studies in inorganic chemistry(4th Ed.), Elsevier, Amsterdam, 1990.
5 Jiang B, Han C, Jiang N. New Journal of Chemistry, 2020, 44(18), 7577.
6 Xu J, Miao S, Tang D, et al. Chemical Research in Chinese Universities, 2021, 38(1), 237.
7 Oyama S T, Gott T, Zhao H, et al. Catalysis Today, 2009, 143(1-2), 94.
8 Oyama S T, Wang X, Lee Y K, et al. Journal of Catalysis, 2002, 210(1), 207.
9 Shu Y, Oyama S T. Carbon, 2005, 43(7), 1517.
10 Clark P, Wang X, Oyama S T. Journal of Catalysis, 2002, 207(2), 256.
11 Zhang R, Wang G, Wei Z, et al. Journal of Materials Chemistry A, 2021, 9(2), 1221.
12 Jia H, Jiang R, Lu W, et al. Journal of Materials Chemistry A, 2018, 6(11), 4783.
13 Zhu Y P, Liu Y P, Ren T Z, et al. Advanced Functional Materials, 2015, 25(47), 7337.
14 Soria L, Sklorz J, Coppel Y, et al. Chemistry of Materials, 2020, 32(10), 4213.
15 Carenco S, Demange M, Shi J, et al. Chemical Communications, 2010, 46(30), 5578.
16 Xie Y, Su H, Qian X, et al. Journal of Solid State Chemistry, 2000, 149(1), 88.
17 Kang Q, Li M, Shi J, et al. ACS Applied Materials & Interfaces, 2020, 12(17), 19447.
18 Bin D, Yang B, Li C, et al. ACS Applied Materials & Interfaces, 2018, 10(31), 26178.
19 Jin W, Chen J, Liu B, et al. Small, 2019, 15(46), 1904210.
20 Fang G, Gao J, Lv J, et al. Applied Catalysis B:Environmental, 2020, 268, 118431.
21 Yan L, Xie L, Wu X L, et al. Carbon Energy, 2021, 3, 856.
22 Shu C, Tan Q, Deng C, et al. Carbon Energy, 2022, 4, 1.
23 Yan X, Deng D, Wu S, et al. Chinese Journal of Structural Chemiustry, 2022, 41(7), 2207004.
24 Wang R, Yang Y, Sun Z, et al. International Journal of Hydrogen Energy, 2022, 47, 2958.
25 Xu X, Wang R, Chen S, et al. Inorganic Chemistry Frontiers, 2022, 9(21), 5507.
26 Wang H, Pei Y, Wang K, et al. Small, DOI:10. 1002/smll.202304863.
27 Cheng R, Min Y, Li H, et al. Nano Energy, 2023, 115, 108718.
28 Zhang G, Liu X, Zhang X, et al. Chinese Journal of Catalysis, 2023, 49, 141.
29 Xu X, Liao H, Huang L, et al. Applied Catalysis B:Environmental, 2024, 341, 123312.
30 Yang H, Zhang Y, Hu F, et al. Nano Letters, 2015, 15(11), 7616.
31 Xu J, Liu Y, Li J, et al. Journal of Materials Chemistry A, 2018, 6(42), 20646.
32 Chen S, Yang X, Tong X, et al. ACS Applied Materials & Interfaces, 2020, 12(31), 34971.
33 Ghosh S, Mondal B, Roy S, et al. Journal of Materials Chemistry A, 2022, 10(15), 8238.
34 Chen K, Huang X, Wan C, et al. Chemical Communications, 2015, 51(51), 7891.
35 Ahn S H, Manthiram A. Small, 2017, 13(40), 1702068.
36 Lin Y, Yang L, Zhang Y, et al. Advanced Energy Materials, 2018, 8(18), 1703623.
37 Huo D, Song F, Hu J, et al. International Journal of Hydrogen Energy, 2021, 46, 8519.
38 Li L, Gao W, Tang K, et al. Electrochimica Acta, 2021, 369, 137692.
39 Waszczuk P, Solla-Gullón J, Kim H S, et al. Journal of Catalysis, 2001, 203(1), 1.
40 Lu G Q, Chrzanowski W, Wieckowski A. The Journal of Physical Che-mistry B, 2000, 104(23), 5566.
41 Rice C, Tong Y, Oldfield E, et al. The Journal of Physical Chemistry B, 2000, 104(24), 5803.
42 Ma Y, Wang H, Li H, et al. RSC Advances, 2014, 4(40), 20722.
43 Zhang L, Wei M, Wang S, et al. Chemical Science, 2015, 6(5), 3211.
44 Jiang M, Li X, Huang W, et al. Electrochimica Acta, 2019, 323, 134813.
45 Jiang M, Ma L, Gan M, et al. Electrochimica Acta, 2019, 293, 30.
46 Xue X, Ge J, Liu C, et al. Electrochemistry Communications, 2006, 8(8), 1280.
47 Lin M L, Lo M Y, Mou C Y. Catalysis Today, 2011, 160(1), 109.
48 Zhang L, Ding L X, Chen H, et al. Small, 2017, 13(17), 1604000.
49 Huang H, Wang H, Hu W, et al. Electrochemistry Communications, 2017, 82, 107.
50 Zheng J N, He L L, Chen C, et al. Journal of Power Sources, 2014, 268, 744.
51 Zhang Z C, Tian X C, Zhang B W, et al. Nano Energy, 2017, 34, 224.
52 Hu G, Shang L, Sheng T, et al. Advanced Functional Materials, 2020, 30(28), 2002281.
53 Luo B, Yan X, Xu S, et al. Electrochemistry Communications, 2013, 30, 71.
54 Sun J, Dou M, Zhang Z, et al. Electrochimica Acta, 2016, 215, 447.
55 Ding J, Jing S, Yin C, et al. Chinese Chemical Letters, 2023, 34(6), 107899.
56 Ding L X, Wang A L, Li G R, et al. Journal of the American Chemical Society, 2012, 134(13), 5730.
57 Yang L, Li G, Ma R, et al. Nano Research, 2021, 14(8), 2853.
58 Ma Y, Wang R, Wang H, et al. Physical Chemistry Chemical Physics, 2014, 16(8), 3593.
59 Deng K, Xu Y, Yang D, et al. Journal of Materials Chemistry A, 2019, 7(16), 9791.
60 Ma Y, Li H, Wang H, et al. Journal of Power Sources, 2014, 268, 498.
61 Lee S H, Kim D J, Yoon Y S. Japanese Journal of Applied Physics, 2013, 52(3R), 035001.
62 Shao A F, Wang Z B, Chu Y Y, et al. Fuel Cells, 2010, 10(3), 472.
63 Chang J, Feng L, Liu C, et al. Energy & Environmental Science, 2014, 7(5), 1628.
64 Feng L, Jiang K, Xue H, et al. Journal of Materials Chemistry A, 2016, 4(47), 18607.
65 Liu H, Yang D, Bao Y, et al. Journal of Power Sources, 2019, 434, 226754.
66 Jiang B, Liao F, Sun Y, et al. Nanoscale, 2017, 9(28), 10138.
67 Zhao Z, Liu H, Gao W, et al. Journal of the American Chemical Society, 2018, 140(29), 9046.
68 Pu Z, Cheng R, Zhao J, et al. iScience, 2020, 23(12), 101793.
69 Guo R, Bi W, Zhang K, et al. Chemistry of Materials, 2019, 31(19), 8205.
70 Li H, Wen P, Itanze D S, et al. Nature Communications, 2020, 11, 3928.
71 Lu B A, Shen L F, Liu J, et al. ACS Catalysis, 2021, 11(1), 355.
72 Kou J, Chen J Z, Gao J, et al. ACS Catalysis, 2021, 11(21), 13496.
73 Zhang C, Liu Q, Zhu J, et al. Materials Today Physics, 2023, 31, 100996.
74 Tian L, Li Z, Xu X, et al. Journal of Materials Chemistry A, 2021, 9(23), 13459.
75 Pu Z, Liu T, Zhao W, et al. ACS Applied Materials & Interfaces, 2020, 12(10), 11737.
76 Chang Q, Ma J, Zhu Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2018, 6(5), 6388.
77 Qin Q, Jang H, Chen L, et al. Advanced Energy Materials, 2018, 8(29), 1801478.
78 Zhou W, Jia J, Lu J, et al. Nano Energy, 2016, 28, 29.
79 Shi Y, Zhang B. Chemical Society Reviews, 2016, 45(6), 1529.
80 Zhu J, Li S, Xiao M, et al. Nano Energy, 2020, 77, 105212.
81 Liu X, Liu F, Yu J, et al. Advanced Science, 2020, 7(17), 2001526.
82 Zhou Y, Xie Z, Jiang J, et al. Nature Catalysis, 2020, 3(5), 454.
83 Deng J, Ren P, Deng D, et al. Angewandte Chemie International Edition, 2015, 54(7), 2100.
84 Tu Y, Deng J, Ma C, et al. Nano Energy, 2020, 72, 104700.
85 Ma R, Wang Y, Li G, et al. Nano Research, 2021, 14(11), 4321.
86 Pu Z, Amiinu I S, Kou Z, et al. Angewandte Chemie International Edition, 2017, 56(38), 11559.
87 Yu J, Wu X, Zhang H, et al. ACS Applied Energy Materials, 2019, 2(4), 2645.
88 Duan H, Li D, Tang Y, et al. Journal of the American Chemical Society, 2017, 139(15), 5494.
89 Chi J Q, Zeng X J, Shang X, et al. Advanced Functional Materials, 2019, 29(33), 1901790.
90 Wang Y, Kong B, Zhao D, et al. Nano Today, 2017, 15, 26.
91 Chen Z, Duan X, Wei W, et al. Journal of Materials Chemistry A, 2019, 7(25), 14971.
92 Pu Z, Liu T, Amiinu I S, et al. Advanced Functional Materials, 2020, 30(45), 2004009.
93 Chen Z, Shan A, Cui Y, et al. CrystEngComm, 2019, 21(2), 228.
94 Yan Y, Thia L, Xia B, et al. Advanced Science, 2015, 2(8), 1500120.
95 Guo J, Zhan Z, Lei T, et al. ACS Applied Energy Materials, 2022, 5(5), 5855.
96 Pan Y, Chen Y, Lin Y, et al. Journal of Materials Chemistry A, 2016, 4(38), 14675.
97 Wei B, Xu G, Hei J, et al. International Journal of Hydrogen Energy, 2021, 46(2), 2225.
98 Callejas J F, Read C G, Popczun E J, et al. Chemistry of Materials, 2015, 27(10), 3769.
99 Zhou D, He L, Zhu W, et al. Journal of Materials Chemistry A, 2016, 4(26), 10114.
100 Chang J, Liang L, Li C, et al. Green Chemistry, 2016, 18(8), 2287.
101 Saadi F H, Carim A I, Verlage E, et al. The Journal of Physical Che-mistry C, 2014, 118(50), 29294.
102 Liu H, Liu D, Gu M, et al. Materials Today Energy, 2019, 14, 100336.
103 Chang J, Li S, Li G, et al. Journal of Materials Chemistry A, 2016, 4(25), 9755.
104 Pan Y, Hu W, Liu D, et al. Journal of Materials Chemistry A, 2015, 3(24), 13087.
105 Sun C, Wang H, Ren J, et al. Nanoscale, 2021, 13(32), 13703.
106 Liu Q, Tang C, Lu S, et al. Chemical Communications, 2018, 54(87), 12408.
107 Xiao Z, Yang M, Wang J, et al. Applied Catalysis B:Environmental, 2022, 303, 120913.
108 Xie T, Wang B, Yang S, et al. Journal of Alloys and Compounds, 2022, 921, 166111.
109 Wang L, Fan J, Liu Y, et al. Advanced Functional Materials, 2021, 31(30), 2010912.
110 Gong Y, Xu L H, Li J, et al. Journal of Alloys and Compounds, 2021, 875, 159934.
111 Diao F, Huang W, Ctistis G, et al. ACS Applied Materials & Interfaces, 2021, 13(20), 23702.
112 Xu M, Shaik F, Jiang B, et al. Journal of the Electrochemical Society, 2020, 167(10), 102515.
113 Zhang F, Meng H, Zhang W, et al. International Journal of Hydrogen Energy, 2018, 43(6), 3203.
114 Li J, Liu H X, Gou W, et al. Energy & Environmental Science, 2019, 12(7), 2298.
115 Jiang Z, Ren J, Li Y, et al. Dalton Transactions, 2019, 48(24), 8920.
116 Liu S, Mu X, Ji P, et al. ChemCatChem, 2020, 12(20), 5149.
117 Ma Q, Jin H, Xia F, et al. Journal of Materials Chemistry A, 2021, 9(47), 26852.
118 Ye S, Xiong W, Liao P, et al. Journal of Materials Chemistry A, 2020, 8(22), 11246.
119 Liu Y, Liu S, Wang Y, et al. Journal of the American Chemical Society, 2018, 140(8), 2731.
120 Mao Q, Jiao S, Ren K, et al. Chemical Engineering Journal, 2021, 426, 131227.
121 Roy S B, Moon S, Kim K H, et al. Applied Catalysis B:Environmental, 2022, 319, 121906.
122 Qin Q, Jang H, Chen L, et al. ACS Applied Materials & Interfaces, 2019, 11(18), 16461.
123 Pu Z, Xue Y, Li W, et al. New Journal of Chemistry, 2017, 41(5), 2154.
124 Ren J, Hu Z, Chen C, et al. Journal of Energy Chemistry, 2017, 26(6), 1196.
125 Gong W, Zhang H, Yang L, et al. Journal of Industrial and Enginee-ring Chemistry, 2022, 106, 492.
126 Jiao L, Zhou Y X, Jiang H L. Chemical Science, 2016, 7(3), 1690.
127 Yan Y, Zhao B, Yi S C, et al. Journal of Materials Chemistry A, 2016, 4(33), 13005.
128 Zhang R, Zhang C, Chen W. Journal of Materials Chemistry A, 2016, 4(48), 18723.
129 Bhutani D, Maity S, Chaturvedi S, et al. Journal of Materials Chemistry A, 2022, 10(42), 22354.
130 Man H W, Tsang C S, Li M M, et al. Chemical Communications, 2018, 54(62), 8630.
131 Qian M, Cui S, Jiang D, et al. Advanced Materials, 2017, 29(46), 1704075.
132 Zhang B, Lui Y H, Ni H, et al. Nano Energy, 2017, 38, 553.
133 Du Y, Han Y, Huai X, et al. International Journal of Hydrogen Energy, 2018, 43(49), 22226.
134 Tang C, Zhang R, Lu W, et al. Advanced Materials, 2017, 29(2), 1602441.
135 Li Y, Zhang H, Jiang M, et al. Advanced Functional Materials, 2017, 27, 1702513.
136 Cai S H, Chen X N, Huang M J, et al. Journal of Materials Chemistry A, 2022, 10(2), 772.
137 Yang S, Zhu J Y, Chen X N, et al. Applied Catalysis B:Environmental, 2022, 304, 120914.
138 Chen D, Lu R, Pu Z, et al. Applied Catalysis B:Environmental, 2020, 279, 119396.
139 Wang L, Zhou Q, Pu Z, et al. Nano Energy, 2018, 53, 270.
140 Song Y, Cheng J, Liu J, et al. Applied Catalysis B:Environmental, 2021, 298, 120488.
141 Zhang Y, Wu C, Jiang H, et al. Advanced Materials, 2018, 30(18), 1707522.
142 Lai W H, Zhang L F, Hua W B, et al. Angewandte Chemie Internatio-nal Edition, 2019, 58(34), 11868.
143 Lee W H, Ko Y J, Kim J Y, et al. Chemical Communications, 2020, 56(84), 12687.
144 Wang Q, Zhang Z, Cai C, et al. Journal of the American Chemical So-ciety, 2021, 143(34), 13605.
[1] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[2] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[3] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[4] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[5] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[6] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[7] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[8] 于舒睿, 杨继凯, 杨雪, 王国政, 尹笑乾. WO3/CuWO4复合薄膜的制备及光电化学性能[J]. 材料导报, 2023, 37(4): 21070015-6.
[9] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[10] 唐春, 吴梦南, 段超, 余堂杰, 于姗, 周莹. 基于光电催化的硫化氢高值利用研究进展[J]. 材料导报, 2023, 37(3): 22020097-7.
[11] 徐文杰, 刘丹, 屈德宇, 李曦. 两电子氧还原电催化合成过氧化氢的研究进展[J]. 材料导报, 2023, 37(24): 22030010-12.
[12] 王叶超, 肖遥, 胡芳馨, 杨鸿斌. 不锈钢催化电极在氧析出中的研究进展[J]. 材料导报, 2023, 37(20): 22040218-11.
[13] 郑德勇, 晋慧慧, 姬鹏霞. Co3S4电极材料的制备及在碱性析氢反应中的重构行为研究[J]. 材料导报, 2023, 37(18): 22040230-4.
[14] 周靓, 何文远, 陈隆源, 朱红伟, 陈丽娟, 凌辉, 郑学军. Sn、P共掺杂MoS2纳米花的制备及电催化析氢性能研究[J]. 材料导报, 2023, 37(15): 22020118-7.
[15] 贾少培, 宗泳吉, 黄权, 李其松, 张茜, 李彩玉, 王志新, 穆云超. 蛋白质衍生氮掺杂碳用作电化学能源材料的研究进展[J]. 材料导报, 2023, 37(15): 21100210-14.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed