Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 23040234-7    https://doi.org/10.11896/cldb.23040234
  电化学能源材料与器件 |
纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究
方瑜1,2, 李靖1,2, 孔维超1, 周雪1,2, 徐林1,2,*, 孙冬梅1,2,*, 唐亚文1,2
1 南京师范大学化学与材料科学学院,南京 210023
2 江苏省新型动力电池重点实验室,南京 210023
In-situ Synthesis of Mott-Schottky Co/Co9S8 Heterojunction Anchored on Carbon Nanosheets for Efficient Electrochemical Performance
FANG Yu1,2, LI Jing1,2, KONG Weichao1, ZHOU Xue1,2, XU Lin1,2,*, SUN Dongmei1,2,*, TANG Yawen1,2
1 School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
2 Jiangsu Key Laboratory of New Power Batteries, Nanjing 210023, China
下载:  全 文 ( PDF ) ( 27859KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以K3[Co(CN)6]为Co源,硫脲为S源,富含-OH和-NH2的天然亲水性高分子壳聚糖为碳源,通过形成CS-K3[Co(CN)6]水凝胶将Co前驱体和S源均匀分布于C前驱体中。水凝胶形成的主要驱动力来自金属Co离子与壳聚糖中-NH2的配位交联以及Co离子之间通过-CN的桥接作用。得益于均匀分散的前驱体和后续热解处理初期形成的Co的催化作用,通过简单地调控Co与S的原子比,原位构建出均匀镶嵌有Co/Co9S8异质结的N,S共掺杂富含微孔的碳纳米片(Co/Co9S8@N,S-CNSs)。采用SEM、TEM、BET、XRD、Raman、XPS和电化学工作站等方法对所制备催化剂的形貌、组成和结构以及电催化性能进行了表征。结果表明,形成的Mott-Schottky型Co/Co9S8异质界面有效地调控了活性中心的电子结构和电荷传输特性;二维掺杂多孔碳纳米片的负载使活性位点更加均匀分散,同时提供了高速的电子和传质通道,也避免了活性位点在催化过程中的迁移聚集。两者的协同作用使合成的Co/Co9S8@N,S-CNSs复合催化剂具有了更优的催化性能,在10 mA·cm-2的电流密度下,其催化碱性析氧反应/OER的过电位仅为304 mV,优于商业化的RuO2催化剂。该研究为发展具有优异电催化性能的廉价过渡金属催化剂提供帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方瑜
李靖
孔维超
周雪
徐林
孙冬梅
唐亚文
关键词:  Co/Co9S8  Mott-Schottky  N,S共掺杂碳纳米片  过渡金属电催化剂    
Abstract: Using K3[Co(CN)6] as Co source, thiurea as S source and natural hydrophilic polymer chitosan rich in -OH and -NH2 as carbon source, the Co precursor and S source were uniformly distributed in the C precursor by forming CS-K3[Co(CN)6] hydrogel. The main driving force of hydrogel formation is the coordination crosslinking of metal Co ions with -NH2 in chitosan and the bridging between Co ions via -CN. Thanks to the uniformly dispersed precursor and the catalysis of the Co formed at the initial stage of subsequent pyrolysis, N, S co-doped carbon nanosheets with encaged Co/Co9S8 heterojunction (Co/Co9S8@N, S-CNSs) were constructed in situ by simply regulating the atomic ratio of Co to S. The morphology, composition and structure of the prepared electrocatalysts and the oxygen evolution reaction performance were analyzed with SEM, TEM, BET, XRD, Raman, XPS and electrochemical workstations. The results show that the Mott-Schottky type Co/Co9S8 interface effectively regulates the electronic structure and charge-transport characteristics of the active center. The loading of two-dimensional doped porous carbon nanosheets makes the active sites more evenly dispersed, while providing high-speed electron and mass transfer channels, as well as avoiding the migration and aggregation of active sites during the catalytic process. The synergistic action of these two allows the proposed Co/Co9S8@N, S-CNSs catalyst have better electrocatalytic performances. At a current density of 10 mA·cm-2, the overpotential of the proposed catalyst for basic oxygen evolution reaction/OER is only 304 mV, which is better than that of the commercial RuO2. This study is helpful for the development of cheap transition metal catalysts with excellent electrocatalytic properties.
Key words:  Co/Co9S8    Mott-Schottky    N,S co-doped carbon nanosheet    transition metal electrocatalyst
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TK91  
基金资助: 国家自然科学基金(22072067; 21972068; 22279062);江苏高校优势学科建设工程项目(1107047002)
通讯作者:  *徐林,南京师范大学化学与材料科学学院教授、博士研究生导师。2004年毕业于南通大学,获得学士学位。2010年毕业于南京大学,获得博士学位。2010年至2015年在美国印第安纳大学和新加坡南洋理工大学进行博士后研究。2015年至今在南京师范大学工作。目前主要从事纳米功能材料及其能源转化与储存的研究。发表论文100余篇,其中包含Advanced Functional Materials、Advanced Science、 Nano Research、 Nanoscale、ACS Applied Materials & Interfaces、Chemistry-A European Journal、The Journal of Physical Chemistry C等。xulin001@njnu.edu.cn
孙冬梅,南京师范大学化学与材料科学学院教授、博士研究生导师。1991毕业于南京师范大学化学系获学士学位;2005年毕业于中国科学院长春应用化学研究所获博士学位。2006—2008年先后在美国University of Hawaii at Manoa和英国University College London进行博士后研究。2019—2020年在澳大利亚The Australian National University作为访问学者访学一年。目前主要从事纳米电催化、燃料电池、新型氧化还原酶的设计及酶的三维结构与功能的相互关系等研究。发表SCI收录论文100余篇,参与编著中英文专业书籍2部。sundongmei@njnu.edu.cn   
作者简介:  方瑜,硕士研究生,2021年6月获得理学学士学位,并于同年考入南京师范大学,攻读硕士学位,在徐林教授的指导下进行研究。目前主要研究领域为电催化材料设计与合成。
引用本文:    
方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
FANG Yu, LI Jing, KONG Weichao, ZHOU Xue, XU Lin, SUN Dongmei, TANG Yawen. In-situ Synthesis of Mott-Schottky Co/Co9S8 Heterojunction Anchored on Carbon Nanosheets for Efficient Electrochemical Performance. Materials Reports, 2024, 38(8): 23040234-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040234  或          http://www.mater-rep.com/CN/Y2024/V38/I8/23040234
1 Li Z,Gao R,Feng M,et al.Advanced Energy Materials,2021,11(16),2003291.
2 Xue W,Zhou Q,Cui X,et al.Nano Energy,2021,86,106073.
3 Li S,Gao Y,Li N,et al.Energy & Environmental Science,2021,14(4),1897.
4 Zhang B,Zheng X,Voznyy O,et al.Science,2016,352(6283),333.
5 Kim M,Seok H,Clament Sagaya Selvam N,et al.Journal of Power Sources,2021,493,229688.
6 Hu X,Chen Y,Zhang M,et al.Carbon,2019,144,557.
7 Wang S,Zhou G,Lv J,et al.Journal of Physics and Chemistry of Solids,2021,148,109696.
8 He L,Huang S,Liu Y,et al.Journal of Colloid and Interface Science,2021,586,538.
9 Hu C,Paul R,Dai Q,et al.Chemical Society Reviews,2021,50(21),11785.
10 Wang H F,Chen L,Pang H,et al.Chemical Society Reviews,2020,49(5),1414.
11 Jia Y,Xue Z,Li Y,et al.Energy & Environmental Materials,2022,5(4),997.
12 Peng W,Wang Y,Yang X,et al.Applied Catalysis B: Environmental,2020,268,118437.
13 Li W,Li Y,Wang H,et al.Electrochimica Acta,2018,265,32.
14 Feng X,Jiao Q,Liu T,et al.ACS Sustainable Chemistry & Engineering,2018,6(2),1863.
15 Zhang P,Liu Y,Liang T,et al.Applied Catalysis B: Environmental,2021,284,119738.
16 Li T,Yin J,Sun D,et al.Small,2022,18(13),2106592.
17 Xue Z H,Su H,Yu Q Y,et al.Advanced Energy Materials,2017,7(12),1602355.
18 Wang J,Liu H,Liu Y,et al.Carbon,2019,144,259.
19 Li L,Song L,Guo H,et al.Nanoscale,2019,11(3),901.
20 Zhong J,Wu T,Wu Q,et al.Journal of Power Sources,2019,417,90.
21 Ma X X,Dai X H,He X Q.ACS Sustainable Chemistry & Engineering,2017,5(11),9848.
22 Zhang X,Liu S,Zang Y,et al.Nano Energy,2016,30,93.
23 Huang S,Meng Y,He S,et al.Advanced Functional Materials,2017,27(17),1606585.
24 Lyu D,Yao S,Ali A,et al.Advanced Energy Materials,2021,11(28),2101249.
25 Jia X,Cui J,Fang H,et al.Inorganic Chemistry Communications,2020,122,108284.
26 Wang X,Zhan G,Wang Y,et al.Journal of Energy Chemistry,2022,68,113.
27 Zhang S,Zhai D,Sun T,et al.Applied Catalysis B: Environmental,2019,254,186.
28 Bai F,Qu X,Wang J,et al.ACS Applied Materials & Interfaces,2020,12(30),33740.
29 Dar M,Majid K,Wahid M.New Journal of Chemistry,2022,46(46),22427.
30 Liu Y,Shen H,Jiang H,et al.International Journal of Hydrogen Energy,2017,42(18),12978.
31 Zhao J Y,Wang R,Wang S,et al.Journal of Materials Chemistry A,2019,7(13),7389.
32 Zhang P,Bin D,Wei J S,et al.ACS Applied Materials & Interfaces,2019,11(15),14085.
33 Li W,Li Y,Fu H,et al.Chemical Engineering Journal,2020,381,122683.
34 Liu H,Ma F X,Xu C Y,et al.ACS Applied Materials & Interfaces,2017,9(13),11634.
35 Huang N,Yan S,Yang L,et al.Journal of Solid State Chemistry,2020,285,121185.
[1] 黄旭锐, 余喻天, 雷金勇, 郝敬轩, 俞传鑫, 潘军, 杨怡萍, 廖梓豪, 关成志, 王建强. 导电(Cu,Mn)3O4接触层在SOEC阳极侧的应用[J]. 材料导报, 2024, 38(8): 23040278-4.
[2] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[3] 陈卓, 谢志雄, 肖述广, 陈琪, 董仕节. 导电炭黑和热处理对Al-Bi复合材料产氢性能的影响[J]. 材料导报, 2023, 37(20): 22050247-8.
[4] 汪尔文, 张兵, 李欣明, 江园, 吴永红, 王同华. 催化炭膜制备及其强化甲醇水蒸气重整制氢反应[J]. 材料导报, 2023, 37(17): 22010107-5.
[5] 秦超, 张鑫, 周奕伦, 孟则达, 刘守清. 单原子铁在硫化钼上的组装及电催化析氢[J]. 材料导报, 2023, 37(11): 21100048-5.
[6] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[7] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[8] 翟建明, 商学欣, 王汉奎, 徐彤, 于海洋, 孙永辉, 柳旺. 基于4130X材料的高压氢脆评价方法研究[J]. 材料导报, 2021, 35(z2): 437-442.
[9] 付文英, 司司, 魏永生, 刘妍, 陈佳琪, 韦露, 赵新生. 硼氢化钠循环再生工艺的研究进展[J]. 材料导报, 2021, 35(15): 15017-15025.
[10] 汪洪波, 谢志雄, 董仕节, 黄海军, 高海燕. AlTi5B催化富铝合金水解产氢反应——一种高效经济制备氢气的方法[J]. 材料导报, 2020, 34(4): 4062-4067.
[11] 翟建明, 徐彤, 王红霞, 马广青, 商学欣. 316L与16Mn材料抗高压氢脆性能研究[J]. 材料导报, 2019, 33(Z2): 497-500.
[12] 魏永生, 王茂森, 康健, 马瑞欣, 韦露, 李建伟, 赵新生. 电沉积法制备三维泡沫镍负载钴催化剂及其工艺条件优化[J]. 材料导报, 2018, 32(19): 3304-3308.
[13] 高助威, 李小高, 刘钟馨, 饶健民. 氢燃料电池汽车的研究现状及发展趋势[J]. 材料导报, 2022, 36(14): 21060046-8.
[14] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed