Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22110152-6    https://doi.org/10.11896/cldb.22110152
  无机非金属及其复合材料 |
基于光热纳米材料的热信号侧向层析技术研究进展
成翊榕, 李万万*
上海交通大学材料科学与工程学院,上海 200240
A Review on the Technique of Photothermal Nanomaterials Based Thermal Lateral Flow Assay
CHENG Yirong, LI Wanwan*
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 8755KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 侧向层析检测(LFA)由于简单、快速、便携、成本低廉等优势在疾病快速诊断筛查领域得到了广泛应用。然而,随着医学检验的发展,传统的LFA越来越难以满足其对高灵敏度检测的需求。许多新型功能纳米材料已被引入LFA作为信号标签来实现其高灵敏度检测,其中基于光热纳米材料的热信号LFA技术具有信号稳定、可探测检测线内所有标签信号、成本低、灵敏度较高等优势,近年来得到了快速的发展。建立热信号LFA的核心问题是用于热信号标签的理想光热纳米材料的开发与应用。本文介绍了光热效应的机制和几种典型光热纳米材料的性能特点,然后综述了近年来基于光热纳米材料构建的热信号LFA及其读卡设备设计开发的研究进展,最后总结了热信号标签材料的评价标准和LFA读卡设备开发改进的方向。希望本文的系统介绍可以助力基于光热纳米材料的热信号LFA技术的未来发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
成翊榕
李万万
关键词:  侧向层析检测  光热纳米材料  光热效应  体外诊断    
Abstract: Lateral flow assay (LFA) has been widely used in rapid disease diagnostics due to its simplicity, rapidity, portability and low cost. However, as the demand for medical testing evolves, it is increasingly difficult for traditional LFA to meet the requirement of high sensitivity. Many new functional nanomaterials have been introduced into LFA as signal labels to achieve high detection sensitivity, among which thermal LFA based on photothermal nanomaterials has been rapidly developed in recent years due to the advantages of signal stability, being able to detect signal of all labels within the detection line, low cost and high sensitivity. The core issue of establishing thermal signal LFA is the development and application of ideal photothermal nanomaterials for thermal labels. In this review, we will introduce the mechanism of photothermal effect, the characteristics of several typical photothermal nanomaterials, recent progress of thermal LFA based on photothermal nanomaterials and designation of LFA rea-der. The paper also summarizes several evaluation criteria of materials for thermal labels and future prospects of thermal LFA reader. We hope that our review will help drive the development of thermal LFA technology based on photothermal nanomaterials.
Key words:  lateral flow assay    photothermal nanomaterial    photothermal effect    in vitro diagnosis
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TB383  
  O657  
基金资助: 国家自然科学基金(81971704)
通讯作者:  *李万万,上海交通大学研究员、博士研究生导师。主要从事光响应材料在疾病诊断治疗中的应用研究,在Nature Communication、Advanced Material等期刊发表SCI论文80余篇,授权专利20余项。wwli@sjtu.edu.cn   
作者简介:  成翊榕,2019年6月于西安交通大学获得工学学士学位,现为上海交通大学材料科学与工程学院/金属基复合材料国家重点实验室硕士研究生,导师为李万万研究员。目前主要从事纳米材料在侧向层析技术中的应用研究。
引用本文:    
成翊榕, 李万万. 基于光热纳米材料的热信号侧向层析技术研究进展[J]. 材料导报, 2024, 38(8): 22110152-6.
CHENG Yirong, LI Wanwan. A Review on the Technique of Photothermal Nanomaterials Based Thermal Lateral Flow Assay. Materials Reports, 2024, 38(8): 22110152-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110152  或          http://www.mater-rep.com/CN/Y2024/V38/I8/22110152
1 Grubb A O, Glad U C. U. S. patent application, 4168146, 1979.
2 Choi D H, Lee S K, Oh Y K, et al. Biosensors and Bioelectronics, 2010, 25(8), 1999.
3 Chen J, Wang L, Lu L, et al. Analytical Chemistry, 2017, 89(12), 6740.
4 Morales-Narváez E, Naghdi T, Zor E, et al. Analytical Chemistry, 2015, 87(16), 8573.
5 Li R, Meng C, Wen Y, et al. Microchimica Acta, 2019, 186(12), 748.
6 Loynachan C N, Thomas M R, Gray E R, et al. ACS Nano, 2018, 12(1), 279.
7 Wang J, Jiang C, Jin J, et al. Angewandte Chemie International Edition, 2021, 60(23), 13042.
8 Fu X, Cheng Z, Yu J, et al. Biosensors and Bioelectronics, 2016, 78, 530.
9 Tran V, Walkenfort B, König M, et al. Angewandte Chemie International Edition, 2019, 58(2), 442.
10 Du S, Wang Y, Liu Z, et al. Biosensors and Bioelectronics, 2019, 144, 111670.
11 Cheng N, Song Y, Shi Q, et al. Analytical Chemistry, 2019, 91(21), 13986.
12 Liu X, Wang K, Cao B, et al. Analytical Chemistry, 2021, 93(7), 3626.
13 Orlov A V, Bragina V A, Nikitin M P, et al. Biosensors and Bioelectro-nics, 2016, 79, 423.
14 Nguyen V T, Song S, Park S, et al. Biosensors and Bioelectronics, 2020, 152, 112015.
15 Zha Z, Yue X, Ren Q, et al. Advanced Materials, 2013, 25(5), 777.
16 Qin Z, Chan W C W, Boulware D R, et al. Angewandte Chemie International Edition, 2012, 51(18), 4358.
17 Zhang D, Du S, Su S, et al. Biosensors and Bioelectronics, 2019, 123, 19.
18 Gao M, Zhu L, Peh C K, et al. Energy & Environmental Science, 2019, 12(3), 841.
19 Li J, Li S, Yang S, et al. ACS Applied Bio Materials, 2022, 5(5), 2224.
20 Bisoyi H K, Urbas A M, Li Q. Advanced Optical Materials, 2018, 6(15), 1800458.
21 Ng K K, Zheng G. Chemical Reviews, 2015, 115(19), 11012.
22 Li J, Zhang W, Ji W, et al. Journal of Materials Chemistry B, 2021, 9(38), 7909.
23 Wang Y, Qin Z, Boulware D R, et al. Analytical Chemistry, 2016, 88(23), 11774.
24 Pang R, Zhu Q, Wei J, et al. RSC Advances, 2021, 11(45), 28388.
25 Zhan L, Granade T, Liu Y, et al. Microsystems & Nanoengineering, 2020, 6(1), 54.
26 Qu Z, Wang K, Alfranca G, et al. Nanoscale Research Letters, 2020, 15(1), 10.
27 Zhang H, Zhang Z, Wang Y, et al. ACS Applied Materials & Interfaces, 2016, 8(44), 29933.
28 Shirshahi V, Tabatabaei S N, Hatamie S, et al. Colloids and Surfaces B:Biointerfaces, 2020, 186, 110721.
29 Ren S, Li Q, Wang J, et al. Journal of Hazardous Materials, 2021, 402, 123781.
30 Li S, Zhang Y, Wen W, et al. Biosensors and Bioelectronics, 2019, 133, 223.
31 Lu Y, Wang Q, Zhang C, et al. Food Analytical Methods, 2021, 14(1), 127.
32 Parolo C, Sena-Torralba A, Bergua J F, et al. Nature Protocols, 2020, 15(12), 3788.
33 Zhang Z, Wang J, Nie X, et al. Journal of the American Chemical Society, 2014, 136(20), 7317.
34 Jain P K, Lee K S, El-Sayed I H, et al. The Journal of Physical Chemistry B, 2006, 110(14), 7238.
35 Kumar P P P, Lim D K. Pharmaceutics, 2022, 14(1), 70.
36 Zharov V P, Galitovsky V, Viegas M. Applied Physics Letters, 2003, 83(24), 4897.
37 Lin L K, Huang P Y, Dutta S, et al. Particle & Particle Systems Characterization, 2019, 36(7), 1900133.
38 Gonzalez-Moa M J, Van Dorst B, Lagatie O, et al. ACS Infectious Diseases, 2018, 4(6), 912.
39 Oh H K, Kim K, Park J, et al. Biosensors and Bioelectronics, 2022, 205, 114094.
40 Zhan L, Guo S Z, Song F, et al. Nano Letters, 2017, 17(12), 7207.
41 Robinson J T, Tabakman S M, Liang Y, et al. Journal of the American Chemical Society, 2011, 133(17), 6825.
42 Liu H, Neal A T, Zhu Z, et al. ACS Nano, 2014, 8(4), 4033.
43 Sun C, Wen L, Zeng J, et al. Biomaterials, 2016, 91, 81.
44 Peng J, Lai Y, Chen Y, et al. Small, 2017, 13(15), 1603589.
45 Liu Y, Ai K, Liu J, et al. Advanced Materials, 2013, 25(9), 1353.
46 Lee H, Dellatore S M, Miller W M, et al. Science, 2007, 318(5849), 426.
47 Lee H, Scherer N F, Messersmith P B. Proceedings of the National Aca-demy of Sciences, 2006, 103(35), 12999.
48 Lou D, Ji L, Fan L, et al. Langmuir, 2019, 35(14), 4860.
49 Liu S, Dou L, Yao X, et al. Food Chemistry, 2020, 315, 126310.
50 Gubala V, Harris L F, Ricco A J, et al. Analytical Chemistry, 2012, 84(2), 487.
51 Zhang D, Du S, Su S, et al. Biosensors and Bioelectronics, 2019, 123, 19.
[1] 吴美容, 赖琼宇, 周佳, 倪赟, 吴琼, 张承武, 于海东, 李林. 基于荧光法纸基器件在体外疾病检测中的应用进展[J]. 材料导报, 2019, 33(1): 48-55.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed