Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22080125-9    https://doi.org/10.11896/cldb.22080125
  金属与金属基复合材料 |
高性能镁合金轧制成形研究进展
张娜娜1, 李全安1,2,*, 陈晓亚1,2, 陈培军3, 谭劲峰4
1 河南科技大学材料科学与工程学院,河南 洛阳 471023
2 有色金属新材料与先进加工技术省部共建协同创新中心,河南 洛阳 471023
3 洛阳晟雅镁合金科技有限公司,河南 洛阳 471921
4 中铝洛阳铜加工有限公司,河南 洛阳 471003
Research Progress on Rolling Forming of High Performance Magnesium Alloys
ZHANG Nana1, LI Quanan1,2,*, CHEN Xiaoya1,2, CHEN Peijun3, TAN Jinfeng4
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, Henan, China
3 Luoyang Shengya Magnesium Alloy Science and Technology Co., Ltd., Luoyang 471921, Henan, China
4 CHINALCO Luoyang Copper Co., Ltd., Luoyang 471003, Henan, China
下载:  全 文 ( PDF ) ( 29877KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着社会的快速发展,轻量化产品的需求不断增加,镁合金作为最轻的结构材料在汽车、航空航天领域受到广泛关注。在众多的镁合金制品中,镁合金板材为其主要的应用之一。但是镁合金的密排六方结构导致镁合金板材在轧制过程中的成形性较差,也影响着轧后板材的性能,这些影响主要体现在:(1)轧制过程中板材由于应力集中容易产生边裂;(2)轧后板材的强度塑性仍较差,具有较强的各向异性,大大限制了镁合金的实际应用。世界范围内生产镁合金板材的厂家通常采用在线加热轧制、高速轧制、限宽轧制、立辊预轧、电塑性轧制、累积叠轧、衬板轧制、等径角轧制、异步轧制、交叉轧制等制备镁合金板材,同时提高了镁合金板材的各项性能。本综述主要集中在对镁合金板材的边裂、晶粒的细化和织构的演变方面的研究。此外,还对上述轧制方法对镁合金板材的微观组织、织构强度和综合性能的影响进行了综述和分析。最后,总结了各种轧制方法的优缺点,并对镁合金板材的发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张娜娜
李全安
陈晓亚
陈培军
谭劲峰
关键词:  镁合金  轧制工艺  组织  成形性能    
Abstract: With the rapid development of society, the demand for lightweight products has increased. As the lightest structural materials, magnesium alloys have received widespread attention in the fields of automobiles and aerospace. Of the many magnesium alloy products, magnesium alloy plates represent some of the most important applications. However, magnesium alloys have a hexagonal close-packed crystal structure that results in the poor formability of magnesium alloy plates during the rolling process and affects the properties of the rolled sheets. These effects mainly are reflected in the following. (i) During the rolling process, the plate material is prone to cracks due to the concentration of stress. (ii) The strength and plasticity of the rolled sheets remain poor and have strong anisotropy, which considerably limits the practical application of magne-sium alloys. Manufacturers worldwide typically produce magnesium alloy sheets using the following methods:online heating rolling, high-speed rolling, width-limited rolling, vertical roll pre-rolling, electric plastic rolling, accumulative roll bonding, hard-plate rolling, equal-channel angular rol-ling, different speed rolling, and cross rolling. Simultaneously, the various properties of magnesium alloy sheets have been improved. As starting points in additional research on magnesium alloys, this review study primarily focuses on magnesium alloy plates in terms of edge cracks, refining grains, and texture evolution. In addition, the effects of the aforementioned rolling methods on the microstructure, texture intensity, and comprehensive performance of magnesium alloy sheets are reviewed and analyzed. Finally, the advantages and disadvantages of the different rolling methods are summarized, and future prospects for the development of magnesium alloy sheets are presented.
Key words:  magnesium alloy    rolling process    microstructure    formability
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TG339  
基金资助: 国家自然科学基金(52201119; 51571084);中原英才计划-中原青年拔尖人才(〔2021〕44号);河南省自然科学基金(222300420435)
通讯作者:  *李全安,1988 年于西安交通大学获得硕士学位,2000 年于四川大学获得博士学位。现任河南科技大学教授、博士研究生导师。目前主要从事稀土功能材料、稀土镁合金、稀土铝合金、稀土表面改性等研究。主持国家自然科学基金、河南省杰出人才基金、河南杰出青年基金等项目 10 余项。发表学术论文 300余篇,授权国家发明专利20余项。qali@haust.edu.cn   
作者简介:  张娜娜,2018年6月、2021年6月分别于华北水利水电大学和齐鲁工业大学获得工学学士学位和硕士学位。现为河南科技大学材料科学与工程学院博士研究生,在李全安教授的指导下进行研究。目前主要研究领域为先进镁合金的设计与开发。
引用本文:    
张娜娜, 李全安, 陈晓亚, 陈培军, 谭劲峰. 高性能镁合金轧制成形研究进展[J]. 材料导报, 2024, 38(2): 22080125-9.
ZHANG Nana, LI Quanan, CHEN Xiaoya, CHEN Peijun, TAN Jinfeng. Research Progress on Rolling Forming of High Performance Magnesium Alloys. Materials Reports, 2024, 38(2): 22080125-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080125  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22080125
1 Yang Y, Xiong X, Chen J, et al. Journal of Magnesium and Alloys, 2021, 9(3), 705.
2 Nazeer F, Long J, Yang Z, et al. Journal of Magnesium and Alloys, 2021, 10(1), 97.
3 Wang Q, Jiang B, Chen D, et al. Journal of Materials Science, 2021, 56(23), 12965.
4 Jia W, Ma L, Jiao M, et al. Journal of Materials Research and Technology, 2020, 9(3), 4773.
5 He J J. Investigation of texture modification on formability of magnesium alloy sheet. Ph. D. Thesis, Chongqing University, China, 2018(in Chinese).
何俊杰. 织构调控改善镁合金板材成形性能的研究. 博士学位论文, 重庆大学, 2018.
6 Liu L Z, Chen X H, Pan F S. Journal of Magnesium and Alloys, 2021, 9(6), 1906.
7 Chaudry U M, Hamad K, Kim J G. Journal of Alloys and Compounds, 2019, 792, 652.
8 Wang W, Miao Q, Chen X, et al. Materials, 2018, 11(10), 2019.
9 Liu Y, Li F, Li X W, et al. Journal of Materials Engineering and Performance, 2018, 27(3), 1334.
10 Liu Y F, Hu Z J, Bi R G, et al. Ordnance Material Science and Engineering, 2019, 42(4), 135(in Chinese).
刘雁峰, 胡忠举, 毕仁贵, 等. 兵器材料科学与工程, 2019, 42(4), 135.
11 Liu D, Bian M Z, Zhu S M, et al. Materials Science and Engineering:A, 2017, 706, 304.
12 Chen T, Chen Z, Yi L, et al. Materials Science and Engineering:A, 2014, 615, 324.
13 Gong X, Gong W, Kang S B, et al. Materials Research, 2015, 18, 360.
14 Suh J, Victoria-Hernández J, Letzig D, et al. Materials Science and Engineering:A, 2016, 650, 523.
15 You S, Huang Y, Kainer K U, et al. Journal of Magnesium and Alloys, 2017, 5(3), 239.
16 Alaneme K K, Okotete E A. Journal of Alloys and Compounds, 2017, 5(4), 460.
17 Zhu S Q, Yan H G, Liao X Z, et al. Acta Materialia, 2015, 82, 344.
18 Tian J, Shi Q X, Meng L X, et al. Materials, 2021, 14(18), 5217.
19 Zha M, Wang S Q, Fang Y, et al. Journal of Netshape Forming Engineering, 2020, 12(5), 20(in Chinese).
查敏, 王思清, 方圆, 等. 精密成形工程, 2020, 12(5), 20.
20 Ma R, Zhao Y, Wang Y. Materials Science and Engineering:A, 2017, 691, 81.
21 Chen W Z, Zhang W C, Qiao Y D, et al. Journal of Alloys and Compounds, 2016, 665, 13.
22 Chen X M, Li L T, Chen W Z, et al. Materials Science and Engineering:A, 2017, 708, 351.
23 Liu J L, Qi Y Y, Wang T, et al. Materials Reports, 2020, 34(7), 7138(in Chinese).
刘江林, 齐艳阳, 王涛, 等. 材料导报, 2020, 34(7), 7138.
24 Song J, Pan F, Jiang B, et al. Journal of Magnesium and Alloys, 2016, 4(3), 151.
25 Yavari F, Shabestari S G. International Journal of Cast Metals Research, 2019, 32(2), 85.
26 Ji Y F, Duan J R, Li H Y, et al. International Journal of Advanced Ma-nufacturing Technology, 2021, 112(7), 1993.
27 Tian J, Deng J, Shi Q, et al. Materials, 2021, 14(19), 5668.
28 Wang B, Xu D, Sheng L, et al. Journal of Materials Science & Technology, 2019, 35(11), 2423.
29 Miao Q, Hu L, Wang G, et al. Materials Science and Engineering:A, 2011, 528(22-23), 6694.
30 Zhao L J, Ma L F, Han T Z, et al. Materials Reports, 2020, 34(21), 21135(in Chinese).
赵磊杰, 马立峰, 韩廷状, 等. 材料导报, 2020, 34(21), 21135.
31 Liu Q, Song J, Pan F, et al. Metals, 2018, 8(10), 860.
32 Wu L, Xiao B, Song J, et al. Advanced Engineering Materials, DOI:10.1002/adem.202200493.
33 Huang Y, Xiao B, Song J, et al. Journal of Materials Research and Technology, 2020, 9(2), 1988.
34 Liu Q, Song J, Huang Y, et al. Journal of Materials Science & Technology, 2022, 112, 24.
35 Liu Q, Song J, Zhao H, et al. Journal of Materials Engineering and Performance, 2020, 29(7), 4212.
36 Pan F, Zeng B, Jiang B, et al. Journal of Alloys and Compounds, 2017, 693, 414.
37 Sanjari M, Farzadfar S A, Utsunomiya H, et al. Materials Science and Technology, 2012, 28(8), 928.
38 Zhou T, Yang Z, Hu D, et al. Journal of Alloys and Compounds, 2015, 650, 436.
39 Su J, Sanjari M, Kabir A S H, et al. Materials Science and Engineering:A, 2015, 636, 582.
40 Sanjari M, Kabir A S H, Farzadfar A, et al. Journal of Materials Science, 2014, 49(3), 1426.
41 Liu X, Zhu B W, Wu Y Z, et al. The Journal of Nonferrous Metals, 2019, 29(2), 232(in Chinese).
刘筱, 朱必武, 吴远志, 等. 中国有色金属学报, 2019, 29(2), 232.
42 Guo F, Zhang D, Yang X, et al. Materials Science and Engineering:A, 2014, 607, 383.
43 Tian J, Lu H, Zhang W, et al. Journal of Magnesium and Alloys, 2021, 10(8), 2193.
44 Huang Z, Qi C, Zou J, et al. Journal of Magnesium and Alloys, DOI:10.1016/j.jma.2021.08.038.
45 Ding Y, Le Q, Zhang Z, et al. Journal of Materials Processing Technology, 2013, 213(12), 2101.
46 Yang B, Xu H, An Q. International Journal of Advanced Manufacturing Technology, 2022, 120(9), 6647.
47 Jiang Y, Guan L, Tang G, et al. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(4), 411.
48 Kukudzhanov K V. Journal of Physics:Conference Series, 2022, 2231(1), 012022.
49 Zhi C, Ma L, Huang Q, et al. Journal of Materials Processing Technology, 2018, 255, 333.
50 Kuang J, Li X, Zhang R, et al. Materials & Design, 2016, 100, 204.
51 Fu H, Zhou X, Wu B, et al. Journal of Materials Science & Technology, 2021, 82, 227.
52 Xing F, Guo F, Su J, et al. Materials Research Express, 2021, 8(6), 066516.
53 Chen W Z, Zhang W C, Zhang L X, et al. Journal of Alloys and Compounds, 2015, 646, 195.
54 Fakhar N, Sabbaghian M, Nagy P, et al. Materials Science and Enginee-ring:A, 2021, 819, 141444.
55 He T, Feng M. Journal of Alloys and Compounds, 2018, 749, 705.
56 Yu H, Xin Y, Wang M, et al. Journal of Materials Science & Technology, 2018, 34(2), 248.
57 Kim W J, Hong S I, Kim Y H. Scripta Materialia, 2012, 67(7-8), 689.
58 Drozd Z, Trojanová Z, Halmeová K, et al. Acta Physica Polonica A, 2018, 134(3), 820.
59 Li L Y, Ou L, Fan C H, et al. Packaging Journal, 2021, 13(4), 70(in Chinese).
李林艳, 欧玲, 范才河, 等. 包装学报, 2021, 13(4), 70.
60 Rao X, Wu Y, Pei X, et al. Materials Science and Engineering:A, 2019, 754, 112.
61 Saito Y, Utsunomiya H, Tsuji N, et al. Acta Materialia, 1999, 47(2), 579.
62 Chen W Z, Ma L M, Chen X M, et al. Materials Science and Enginee-ring:A, 2018, 733, 350.
63 Guo J, Wang J, Zhang T, et al. Materials Research Express, 2020, 7(12), 126513.
64 Trojanová Z, Drozd Z, Luká P, et al. Low Temperature Physics, 2018, 44(9), 966.
65 Hou L, Wang T, Wu R, et al. Journal of Materials Science & Technology, 2018, 34(2), 317.
66 Wu H, Wang T, Wu R, et al. Journal of Manufacturing Processes, 2019, 46, 139.
67 Wang H Y, Yu Z P, Zhang L, et al. Scientific Reports, 2015, 5(1), 17100.
68 Huo P D, Li F, Wang Y, et al. International Journal of Advanced Manufacturing Technology, 2022, 118(1), 55.
69 Zhang H M, Cheng X M, Zha M, et al. Materialia, 2019, 8, 100443.
70 Rong J, Wang P Y, Zha M, et al. Journal of Alloys and Compounds, 2018, 738, 246.
71 Zhao P Y, Zha M, Li Z H, et al. Materials Science and Engineering:A, 2017, 695, 1.
72 Luo D, Wang H Y, Zhao L G, et al. Materials Characterization, 2017, 124, 223.
73 Wang C, Ning H, Liu S, et al. Scripta Materialia, 2021, 204, 114119.
74 Lu W N, Li X Y, Zhang J, et al. Metallurgy and Materials, 2018, 38(4), 58(in Chinese).
卢维娜, 李希云, 张进, 等. 冶金与材料, 2018, 38(4), 58.
75 Tang W, Huang S, Li D, et al. Journal of Materials Processing Technology, 2015, 215, 320.
76 Huang J, Jiang Y, Jiang F, et al. Advanced Engineering Materials, 2022, 24(3), 2100831.
77 Kazemi-Navaee A, Jamaati R, Aval H J. Archives of Civil and Mechanical Engineering, 2022, 22(1), 1.
78 Wang Q, Jiang B, Liu L, et al. Journal of Materials Research and Technology, 2020, 9(5), 9607.
79 Pan S W. Tailoring the texture and anisotropy of a Mg-2Zn-2Gd alloy plates by cross rolling. Master’s Thesis, Chongqing University, China, 2016(in Chinese).
潘士伟. 交叉轧制工艺调控Mg-2Zn-2Gd板材织构分布及其各向异性的研究. 硕士学位论文, 重庆大学, 2016.
80 Li X, Al-Samman T, Gottstein G. Materials & Design, 2011, 32(8-9), 4385.
81 Zhang P, Xin Y, Zhang L, et al. Journal of Materials Science & Techno-logy, 2020, 41, 98.
82 Hu Z, Chen Z, Xiong J, et al. Materials Science and Engineering:A, 2016, 662, 519.
83 Pan S, Xin Y, Huang G, et al. Materials Science and Engineering:A, 2016, 653, 93.
84 Liu L, Du Z Z, Zhu X Y, et al. Hot Working Technology, 2015, 44(5), 5(in Chinese).
刘立, 杜忠泽, 朱晓雅, 等. 热加工工艺, 2015, 44(5), 5.
85 Wang W K. Research on lowered temperature rolling of ZK60 plates and the effect of texture on formability. Ph. D. Thesis, Harbin Institute of Technology, China, 2019(in Chinese).
王文珂. ZK60镁合金板材降温轧制及织构对其成形性影响研究. 博士学位论文, 哈尔滨工业大学, 2019.
86 Ko Y G, Hamad K. Journal of Alloys and Compounds, 2018, 744, 96.
87 Hamad K, Chung B K, Ko Y G. Journal of Alloys and Compounds, 2014, 615, S590.
88 Ren X, Huang Y, Zhang X, et al. Materials Science and Engineering:A, 2021, 800, 140306.
89 Kwak T Y, Kim W J. Journal of Materials Science & Technology, 2017, 33(9), 919.
90 Majchrowicz K, Adamczyk-Cieślak B, Chromiński W, et al. Materials, 2022, 15(3), 785.
91 Majchrowicz K, Jóźwik P, Chromiński W, et al. Materials, 2020, 14(1), 83.
92 Luo D, Wang H Y, Zhao L G, et al. Materials Characterization, 2017, 124, 223.
93 Kim Y S, Kim W J. Materials Science and Engineering:A, 2016, 677, 332.
94 Zhang H, Xu Z, Yarmolenko S, et al. Metals, 2021, 11(6), 926.
95 Song D, Zhou T, Tu J, et al. Journal of Materials Processing Technology, 2018, 259, 380.
96 Yuan Y, Ma A, Gou X, et al. Materials Science and Engineering:A, 2015, 630, 45.
97 Minárik P, Veselý J, Král R, et al. Materials Science and Engineering:A, 2017, 708, 193.
98 Tan Y, Li W, Hu W, et al. Materials, 2019, 12(9), 1554.
99 Shi L, Liu L, Hu L, et al. Materials, 2020, 13(15), 3346.
100 Tu J, Zhou T, Liu L, et al. Journal of Alloys and Compounds, 2018, 768, 598.
101 Qin L J. Study on microstructure and mechanical properties of AZ31 magnesium alloy sheet with equal channer angular rolling-single pass bending deformation. Master’s Thesis, Chongqing University of Technology, China, 2018(in Chinese).
秦梁杰. 等径角轧制-单道次弯曲变形AZ31镁合金板材组织与力学性能研究. 硕士学位论文, 重庆理工大学, 2018.
102 Yuan Y, Guo Q, Sun J, et al. Metals, 2019, 9(4), 386.
[1] 陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
[2] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[3] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[4] 董书琳, 曲迎东, 陈瑞润, 郭景杰, 王琪, 李广龙, 张伟, 于波. Ti-44Al-6Nb-2Fe合金低温超塑性及高温拉伸组织演化[J]. 材料导报, 2024, 38(1): 22090130-6.
[5] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[6] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[7] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[8] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[9] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[10] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[11] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[12] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[13] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[14] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[15] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed