Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22050068-6    https://doi.org/10.11896/cldb.22050068
  宇航材料 |
反应熔渗工艺制备碳纤维增强陶瓷基复合材料研究进展
冯士杰*, 宋环君, 陈昊然, 孙娅楠, 杨小健, 张宝鹏, 杨良伟, 刘伟
航天特种材料及工艺技术研究所,北京 100074
Research Process on Preparation of Carbon Fiber Reinforced Ceramic Matrix Composites by Reactive Melt Infiltration
FENG Shijie*, SONG Huanjun, CHEN Haoran, SUN Yanan, YANG Xiaojian, ZHANG Baopeng, YANG Liangwei, LIU Wei
Aerospace Institute of Advanced Materials & Processing Technology, Beijing 100074, China
下载:  全 文 ( PDF ) ( 2404KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 反应熔渗(RMI)工艺制备碳纤维增强陶瓷基复合材料具有周期短、成本低、致密度高等优势,因此获得了广泛关注。本文主要对影响RMI工艺制备碳纤维增强陶瓷基复合材料的三方面因素(多孔低密度C/C基材结构、基体改性成分及制备工艺)的研究进展进行了综述。研究显示:通过对多孔低密度C/C基材中碳基体类型、碳纤维预制体结构、基材密度及孔隙结构进行优化设计,可显著提升复合材料的力学及抗氧化烧蚀性能;通过基体改性技术在C/C复合材料中引入功能性组元,可显著提高复合材料的抗氧化烧蚀、耐磨擦等性能;通过熔渗工艺优化,如调整熔渗温度、时间,选择合适的熔渗物类型等,可制备出综合性能良好的复合材料。最后,指出了目前RMI工艺制备碳纤维增强陶瓷基复合材料中存在的主要问题和潜在研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯士杰
宋环君
陈昊然
孙娅楠
杨小健
张宝鹏
杨良伟
刘伟
关键词:  反应熔渗  陶瓷基复合材料  多孔低密度C/C基材  基体改性    
Abstract: Carbon fiber reinforced ceramic matrix composites prepared by reactive melt infiltration (RMI) process have attracted extensive attention because of the advantages of short cycle, low cost and high density. In this paper, the research progress of porous low-density C/C substrate structure, matrix modification composition and preparation process affecting the preparation of carbon fiber reinforced ceramic matrix composites by RMI is reviewed. The results show that the mechanical and anti-oxidation ablation performance of the composites can be significantly improved by optimizing the carbon matrix type, carbon fiber preform structure, substrate density and pore structure. By introducing functional components into C/C composites through matrix modification technology, the oxidation, ablation and abrasion resistance of C/C composites can be significantly improved. The composites with good comprehensive properties can be prepared by optimizing the infiltration process, such as adjusting the infiltration temperature and time, and selecting the appropriate type of infiltrants. Finally, the main problem and potential research directions in the preparation of carbon fiber reinforced ceramic matrix composites by RMI process are pointed out.
Key words:  reactive melt infiltration    ceramic matrix composite    porous low-density C/C matrix    matrix modification
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TB332  
通讯作者:  * woxinfeixiangfeng@126.com   
作者简介:  冯士杰,博士。现为航天特种材料及工艺技术研究所工程师。目前主要从事超高温陶瓷基复合材料、高温陶瓷涂层的制备及性能研究工作。发表多篇论文,包括Ceramics International、Engineering Failure Analysis等。
引用本文:    
冯士杰, 宋环君, 陈昊然, 孙娅楠, 杨小健, 张宝鹏, 杨良伟, 刘伟. 反应熔渗工艺制备碳纤维增强陶瓷基复合材料研究进展[J]. 材料导报, 2022, 36(22): 22050068-6.
FENG Shijie, SONG Huanjun, CHEN Haoran, SUN Yanan, YANG Xiaojian, ZHANG Baopeng, YANG Liangwei, LIU Wei. Research Process on Preparation of Carbon Fiber Reinforced Ceramic Matrix Composites by Reactive Melt Infiltration. Materials Reports, 2022, 36(22): 22050068-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050068  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22050068
1 Guo W, Bai S, Ye Y, et al. Journal of the European Ceramic Society, 2020, 41(4), 2347.
2 Huang Q Z. Fabrication, structure and application of high-performance carbon/carbon composites, Central South University Press, China, 2010, pp.8(in Chinese).
黄启忠. 高性能炭/炭复合材料的制备、结构与应用, 中南大学出版社, 2010, pp.8.
3 Chen X W, Feng Q, Kan Y M, et al. Journal of the European Ceramic Society, 2020, 40(7), 2683.
4 Zhang L T. Fiber-reinforced silicon carbide ceramic composites-modeling, characterization & design, Chemical Industry Press, China, 2009, pp.28(in Chinese).
张立同. 纤维增韧碳化硅陶瓷复合材料:模拟、表征与设计, 化学工业出版社, 2009, pp.28.
5 Jiang S Z, Xiang X, Chen Z K, et al. Materials & Design, 2009, 30(9), 3738.
6 Peng Z, Sun W, Xiong X, et al. Journal of Materials Research and Technology, 2021, 14, 662.
7 Wang S, Zhu Y, Chen H, et al. Ceramics International, 2014, 40(5), 7307.
8 Zhu Y L. Preparation and properties of carbon fiber-reinforced zirconium carbide matrix composites by reactive melt infiltration at relatively low temperature. Ph.D. Thesis, National University of Defense Technology, China, 2014(in Chinese).
祝玉林. C/ZrC复合材料的低温熔渗反应制备及性能研究. 博士学位论文, 国防科学技术大学, 2014.
9 Zeng Y, Xiong X, Li G, et al. Carbon, 2013, 63, 92.
10 Chen X W, Ni D W, Kan Y M, et al. Journal of Materiomics, 2018, 4(3), 266.
11 Tong Y G, Cai Z H, Bai S X, et al. Ceramics International, 2018, 44, 16577.
12 Chen X W, Dong S M, Kan Y M, et al. Journal of the European Ceramic Society, 2016, 36(16), 3969.
13 Zhang H, Liang X B, Hu Y L, et al. Advanced Composites and Hybrid Materials, 2021, 4, 743.
14 Wang D K, Dong S M, Zhou H J, et al. Ceramics International, 2016, 42(8), 10272.
15 Wang D K, Dong S M, Zhou H J, et al. Ceramics International, 2016, 42(6), 6720.
16 Chen X W, Dong S M, Kan Y M, et al. Journal of the European Ceramic Society, 2016, 36(15), 3607.
17 Ni D W, Wang J X, Dong S M, et al. Journal of the American Ceramic Society, 2018, 101(8), 3253.
18 Chen X W, Feng Q, Gao L, et al. Journal of the American Ceramic Society, 2017, 100(10), 4816.
19 Jiang J M, Wang S, Li W, et al. Ceramics International, 2015, 41(7), 8488.
20 Liu Y. Ultra high temperature ceramic modified carbon/carbon composites prepared by reactive melt infilation method. Ph.D. Thesis, Northwestern Polytechnical University, China, 2017(in Chinese).
刘跃. 反应熔渗法制备超高温陶瓷改性C/C复合材料的研究. 博士学位论文, 西北工业大学, 2018.
21 Fan S W, Ning Y F, Ma X. Ceramics International, 2019, 45, 21579.
22 Li J W, Xiao P, Li Z. International Journal of Applied Ceramic Technology, 2021, 18, 981.
23 Duan L Y, Zhao X, Wang Y G. Ceramics International, 2017, 43(18), 16114.
24 Naikade M, Fankhnel B, Weber L, et al. Journal of the European Ceramic Society, 2019, 39(4), 735.
25 Ni Y L, Luo R Y, Luo H. Journal of Alloys and Compounds, 2019, 798, 784.
26 Zhou W, Li Y. Composites Part B: Engineering, 2019, 160, 76.
27 Messner R P, Chiang Y M. Journal of the American Ceramic Society, 2010, 73(5), 1193.
28 Singh M, Behrendt D R. Materials Science and Engineering A, 1995, 194(2), 193.
29 Simner S P, Xiao P, Derby B. Journal of Materials Science, 1998, 33(23), 5557.
30 Aoki T, Ogasawara T, Okubo Y, et al. Composites Part A: Applied Science and Manufacturing, 2014, 66, 155.
31 Aoki T, Ogasawara T. Composites Part A, Applied Science and Manufacturing, 2015, 76, 102.
32 Gao Y Q, Liu Y S, Wang J, et al. Ceramics International, 2020, 46(11), 18976.
33 Tong Y G. Preparation and properties of modified C/C composite by Si-Zr alloyed melt infiltration. Ph.D. Thesis, National University of Defense Technology, China, 2015(in Chinese).
仝永刚. Si-Zr二元系合金反应熔渗改性C/C复合材料及其性能研究. 博士学位论文, 国防科学技术大学, 2015.
34 Arai Y, Inoue R, Goto K, et al. Ceramics International, 2019, 45(12), 14481.
35 Wang Y G, Zhu X J, Zhang L T, et al. Ceramics International, 2012, 38(5), 4337.
36 William G F, Eric J W, William E L. Ultra-high temperature ceramics,materials for extreme environment applications, National Defense Industry Press, China, 2016, pp.2(in Chinese).
威廉·法伦霍尔茨, 艾瑞克·乌齐纳, 威廉·李. 超高温陶瓷——应用于极端服役环境的材料, 国防工业出版社, 2016, pp.2.
37 Jiang J M, Wang S, Li W, et al. Materials Science and Engineering A, 2014, 607, 334.
38 Tong Y G, Bai S X, Chen K, et al. Ceramics International, 2012, 38(7), 5723.
39 Wang S, Zhu Y L, Chen H M, et al. Ceramics International, 2015, 41(4), 5976.
40 Vinci A, Zoli L, Galizia P, et al. Composites Part A: Applied Science and Manufacturing, 2020, 137, 105973.
41 Marius K, Helmreich T, Rosiwal S, et al. Advances in Applied Ceramics, 2018, 117(sup1), s62.
42 Wu H, Yi M Z, Ge Y C, et al. Materials Characterization, 2018, 138, 238.
43 Wu H, Yi M Z, Ge Y C, et al. Corrosion Science, 2019, 160, 108175.
44 Li K Z, Jing X, Fu Q G, et al. Carbon, 2013, 57(3), 161.
45 Arai Y, Marumo T, Inoue R. Journal of Composites Science,2021,5,186.
46 Zeng Y, Xiong X, Li G D, et al. Carbon, 2013, 54, 300.
47 Zeng Y, Xiong X, Wang D N, et al. Corrosion Science, 2015, 98, 98.
48 Yang Z H. The infiltration mechanism study of Hf-based alloy into the carbon materials at low temperature. Master's Thesis, National University of Defense Technology, China, 2014(in Chinese).
杨振寰. 铪基合金低温熔渗碳材料机理研究. 硕士学位论文, 国防科学技术大学, 2014.
49 Hou X C, Hao Z H, Shu Y C, et al. Journal of Central South University (Science and Technology), 2020, 51(11), 3032(in Chinese).
侯旭初,郝振华,舒永春,等. 中南大学学报:自然科学版, 2020, 51(11), 3032.
50 Chang Y B, Sun W, Xiong X, et al. Ceramics International, 2016, 42(15), 16906.
51 Xu Y L, Sun W, Xiong X, et al. Ceramics International,2020,46(5),6424.
52 Xu Y L, Sun W, Miao C M, et al. Journal of the European Ceramic Society, 2021, 41(11), 5405.
53 Guo W J, Bai S X, Ye Y C, et al. International Journal of Applied Ceramic Technology, 2018, 16(1), 88.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 邓杨芳, 范晓孟, 张根, 吴长波, 钟燕, 何爱杰, 殷小玮. 预氧化Cf/SiC陶瓷基复合材料及其构件的抗疲劳特性研究[J]. 《材料导报》期刊社, 2018, 32(4): 631-635.
[3] 冯东, 姜岩, 茹红强, 罗旭东, 张国栋, 曹一伟. 纳米-Al2O3/SiO2加入量对MgO-Al2O3-SiO2复相陶瓷烧结机理的影响[J]. 材料导报, 2018, 32(24): 4248-4252.
[4] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[5] 卢国锋. Si-O-C界面对C/Si-C-N复合材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 121-124.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed