Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22040187-6    https://doi.org/10.11896/cldb.22040187
  无机非金属及其复合材料 |
Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究
程婷1, 陈晨2,*, 张晓1,3, 温明月2, 王磊2
1 江苏城市职业学院环境生态学院,南京 210017
2 江苏科技大学环境与化学工程学院,江苏 镇江 212100
3 南京大学盐城环保技术与工程研究院,江苏 盐城 224005
Density Functional Theory Research About Adsorption Properties of Formaldehyde Molecule on Mn Doped Zigzag(8,0) Type Single-walled Carbon Nanotubes
CHENG Ting1, CHEN Chen2,*, ZHANG Xiao1,3, WEN Mingyue2, WANG Lei2
1 School of Environmental Ecology, Jiangsu City Vocational College, Nanjing 210017, China
2 School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
3 Nanjing University and Yancheng Academy of Environmental Technology and Engineering, Yancheng 224005, Jiangsu, China
下载:  全 文 ( PDF ) ( 16824KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 甲醛是一种对人体健康造成巨大威胁的污染物。气态甲醛浓度的准确检测对大气空气治理评估和室内环境安全均有重要意义,而高效传感器的研发则是甲醛分子检测技术优化的关键。本研究通过基于第一性原理的DFT计算软件VASP,对甲醛分子在Mn掺杂Zigzag (8,0)型单臂碳纳米管上的吸附特性进行研究。结果表明:Mn掺杂Zigzag (8,0)型单臂碳纳米管是一种稳定的分子构型。区别于在原始CNT上的物理吸附过程,甲醛分子在Mn掺杂CNT上的吸附键长更短,吸附能更大,属于化学吸附过程。同时,甲醛分子在Mn掺杂CNT上的吸附过程还伴随着明显的电荷转移。吸附过程发生后,吸附样品的光吸收曲线在580~705 nm以及365~447 nm的范围内出现明显的蓝移,在307~360 nm的范围内出现了明显的红移。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程婷
陈晨
张晓
温明月
王磊
关键词:  Mn掺杂  碳纳米管  甲醛  吸附    
Abstract: Formaldehyde is a pollutant that poses a great threat to human health. The accurate detection of gaseous formaldehyde concentration is of great significance for atmospheric air treatment evaluation and indoor environmental safety, and the key to the development of efficient for-maldehyde detection technology is the development of molecular sensors. In this work, the adsorption characteristics of formaldehyde molecules on Mn doped Zigzag (8, 0) single-walled carbon nanotubes were studied by using the DFT calculation software VASP based on the first principle. The results revealed that, the Mn doped Zigzag (8, 0) single-walled carbon nanotubes were a stable molecular configuration. Different from the physical adsorption process on the original CNT, the adsorption process of formaldehyde molecules on Mn doped CNT displayed shorter adsorption bond length and greater adsorption energy, which belonged to chemical adsorption process. At the same time, the adsorption process of for-maldehyde molecules on Mn doped CNT was also accompanied by obvious charge transfer. After the adsorption process, the light absorption curve of the adsorbed sample exhibited an obvious blue shift in the range of about 580—705 nm and 365—447 nm, and an obvious red shift in the range of 307—360 nm.
Key words:  Mn doping    carbon nanotubes    formaldehyde    adsorption
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  X131  
基金资助: 镇江市2021年重点研发项目(社会发展 SH2021020); 江苏省大学生创新训练计划项目(202114000015Y)
通讯作者:  *陈晨,江苏科技大学环境与化学工程学院副教授、硕士研究生导师。2005年湘潭大学环境工程专业本科毕业,2011年南京大学博士毕业后到江苏科技大学工作至今,目前主要从事新型环境材料方面的研究工作。chenc@just.edu.cn   
作者简介:  程婷,2005年6月、2008年6月分别于湘潭大学获得工学学士学位和硕士学位。现为江苏城市职业学院高级实验师。目前主要研究领域为新型环境材料。
引用本文:    
程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
CHENG Ting, CHEN Chen, ZHANG Xiao, WEN Mingyue, WANG Lei. Density Functional Theory Research About Adsorption Properties of Formaldehyde Molecule on Mn Doped Zigzag(8,0) Type Single-walled Carbon Nanotubes. Materials Reports, 2024, 38(4): 22040187-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040187  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22040187
1 Khamkeaw A, Phisalaphong M, Jongsomjit B, et al. Journal of Hazar-dous Materials, 2020, 384, 121161.
2 Li S J, Huang H J, Shang L L, et al. Materials Reports, 2021, 35(S2), 75(in Chinese).
李世杰, 黄慧娟, 尚莉莉, 等. 材料导报, 2021, 35(S2), 75.
3 De Falco G, Li W, Cimino S, et al. Carbon, 2018, 138, 283.
4 Huang H J, Li S J, Shang L L, et al. Materials Reports, 2021, 35(24), 24041(in Chinese).
黄慧娟, 李世杰, 尚莉莉, 等. 材料导报, 2021, 35(24), 24041.
5 Shalbafan A, Hassannejad H, Rahmaninia M. International Journal of Adhesion and Adhesives, 2020, 102, 102669.
6 Bellat J P, Bezverkhyy I, Weber G, et al. Journal of Hazardous Mate-rials, 2015, 300, 711.
7 Sun Y, Sun S, Zheng Y, et al. Applied Surface Science, 2021, 570, 151110.
8 Tang J, Deng L, Zhang S, et al. Materials Reports, 2022, 36(2), 18(in Chinese).
谭洁慧, 邓凌峰, 张淑娴, 等. 材料导报, 2022, 36(2), 18.
9 Kupka T, Stachów M, Cheómecka E, et al. Synthetic Metals, 2012, 162(7-8), 573.
10 Rahmanifar E, Yoosefian M, Karimi-Maleh H. Synthetic Metals, 2016, 221, 242.
11 Beheshtian J, Peyghan A A, Bagheri Z. Structural Chemistry, 2012, 24(4), 1331.
12 Li W, Lu X M, Li G Q, et al. Applied Surface Science, 2016, 364, 560.
13 Zhou X, Zhao C, Chen C, et al. Applied Surface Science, 2020, 525, 146595.
14 Hassan A J. Russian Journal of Physical Chemistry A, 2020, 94(8), 1636.
15 Kurban M. Optik, 2018, 172, 295.
16 Yan Q, Sun R M, Wang L P, et al. Journal of Colloid and Interface Science, 2021, 603, 559.
17 Zhang G, Xie W, Chen Y, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25(6), 1502.
18 Zhang T, Sun H, Wang F, et al. Applied Surface Science, 2017, 425(15), 340.
19 López-Corral I, De Celis J, Juan A, et al. International Journal of Hydrogen Energy, 2012, 37(13), 10156.
20 Girao E C, Fagan S B, Zanella I, et al. Journal of Hazardous Materials, 2010, 184(1-3), 678.
21 Kresse G G, Furthmüller J J. Physical Review B: Condensed Matter, 1996, 54, 11169.
22 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865.
23 Perdew J P, Chevary J A, Vosko S H, et al. Physical Review B: Condensed Matter, 1992, 46(11), 6671.
24 Nityananda R, Hohenberg P, Kohn W. Resonance, 2017, 22(8), 809.
25 Kohn W, Sham L. Physical Review, 1965, 140(4A), 1133.
26 Santos E, Ayuela A, Sánchez-Portal D. New Journal of Physics, 2010, 12(5), 053012.
27 Baei M T, Soltani A, Hashemian S, et al. Canadian Journal of Chemistry, 2014, 92(7), 605.
28 Shakerzadeh E, Khodayar E, Noorizadeh S. Computational Materials Science, 2016, 118, 155.
29 Beheshtian J, Peyghan A A, Bagheri Z. Sensors Actuators B Chemical, 2012, 171-172, 846.
30 Wang R, Zhu R, Zhang D. Chemical Physics Letters, 2008, 467(1-3), 131.
[1] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[2] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[3] 李佳敏, 常麟晖, 陈步明, 黄惠, 郭忠诚. 氯化物体系单槽双室电积锰工艺研究[J]. 材料导报, 2024, 38(3): 22010135-6.
[4] 周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
[5] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[6] 李娅, 马飞跃, 张明, 涂行浩, 杜丽清. 不同尺寸改性果胶基磁性微球的制备及对Pb2+吸附性能的研究[J]. 材料导报, 2023, 37(9): 21050165-8.
[7] 李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
[8] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[9] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[10] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[11] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[12] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[13] 宋学锋, 陆伟宁. 转化方式对粉煤灰地聚物原位转化沸石及其Pb2+吸附性能的影响[J]. 材料导报, 2023, 37(6): 21070249-7.
[14] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[15] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed