Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22020113-6    https://doi.org/10.11896/cldb.22020113
  金属与金属基复合材料 |
氮在不锈钢GMAW电弧中的过渡规律及对焊缝组织和性能的影响
程尚华1, 李方亮1, 张一琪1, 武少杰1,2, 程方杰1,2,*
1 天津大学材料科学与工程学院,天津 300350
2 天津市现代连接技术重点实验室,天津 300350
Transition of Nitrogen During the GMAW Process and Its Effects on the Microstructure and Properties of Stainless Steel Joint
CHENG Shanghua1, LI Fangliang1, ZHANG Yiqi1, WU Shaojie1,2, CHENG Fangjie1,2,*
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
2 Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350, China
下载:  全 文 ( PDF ) ( 7152KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在不锈钢熔化极气体保护焊(GMAW)中,通过向保护气中加入定量的N2实现了对焊接接头组织和性能的精确调控。结果表明,增加保护气中的N2含量、减小送丝速度或者提高焊接电压都会使得熔覆金属中的N含量升高,同时铁素体数(FN)减少;经典的WRC-1992相图无法精确地预测多层焊熔覆金属的FN,在FA凝固模式下焊缝金属的FN预测值比实测结果低约2.7;在保护气中添加10%的N2,可以在保证FA凝固模式不变的同时,精确地控制铁素体数在3.0左右,同时接头的耐点蚀性能显著提升。与前期的GTAW添加N2的结果对比发现,GMAW工艺下N元素更难向熔池过渡,需要添加的N2量约为前者的10倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程尚华
李方亮
张一琪
武少杰
程方杰
关键词:  奥氏体不锈钢  熔化极气体保护焊  熔覆金属N含量  耐点蚀性能    
Abstract: In this research, the microstructure and properties of the stainless steel joint were accurately controlled by adding certain amount of N2 to the shielding gas of the gas metal arc welding (GMAW) process. The increase of the N2 addition, the decrease of the wire feeding speed and the raise of the welding voltage promoted the transition of elemental N from the arc to the deposition metal and resulted in the decrease of the ferrite number (FN) of the joint. It was also proved that the WRC-1992 diagram could not give an accurate prediction of the FN of the multi-pass stainless steel joint that the predicted FN of the deposition metal solidifying as type FA was about 2.7 lower than the measured FN. By adding 10%N2 to the shielding gas, the multi-pass stainless steel joint remained solidifying as type FA and its FN was successfully controlled to about 3.0, which significantly improved its pitting corrosion resistance. The transition of element N was significantly harder in GMAW process than in gas tungsten arc welding (GTAW) process, thus about 10 times of N2 should be added to the shielding gas of GMAW process to promote the N transition.
Key words:  austenitic stainless steel    gas metal arc welding    N content of deposited metal    pitting resistance
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TG444  
基金资助: 国家自然科学基金(51775372)
通讯作者:  *程方杰,天津大学材料科学与工程学院教授、博士研究生导师。1999年西安交通大学机械系焊接工艺与设备专业硕士毕业,2002年天津大学机械学院博士毕业,后到天津大学材料学院工作至今。目前主要从事先进材料焊接工艺、不锈钢焊接等方面的研究工作。发表论文多篇,包括Additive Manufacturing、Materials Letters、Journal of Materials Processing Technology等。chfj@tju.edu.cn   
作者简介:  程尚华,2005年6月和2007年7月于天津大学分别获得工学学士学位和硕士学位。现为天津大学材料科学与工程学院博士研究生,在程方杰教授的指导下进行研究。目前主要从事氩氮混合气在不锈钢焊接过程的机理和影响研究。
引用本文:    
程尚华, 李方亮, 张一琪, 武少杰, 程方杰. 氮在不锈钢GMAW电弧中的过渡规律及对焊缝组织和性能的影响[J]. 材料导报, 2023, 37(18): 22020113-6.
CHENG Shanghua, LI Fangliang, ZHANG Yiqi, WU Shaojie, CHENG Fangjie. Transition of Nitrogen During the GMAW Process and Its Effects on the Microstructure and Properties of Stainless Steel Joint. Materials Reports, 2023, 37(18): 22020113-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020113  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22020113
1 Li F L, Cheng S H, Shao Z J, et al. Welding & Joining, 2020, 64(3), 24 (in Chinese).
李方亮, 程尚华, 邵珠晶, 等. 焊接, 2020, 64(3), 24.
2 Cheng S H, Cheng F J, Zhang Y Q, et al. Indian Academy of Sciences, 2020, 45(128), 1.
3 Shankar V, Mannan S L, Gill T P S, et al. Materials Science and Engineering A, 2003, 343(2003), 170.
4 Ganesan V, Mathew M D, Sankara R K B. Materials Science and Technology, 2009, 25(5), 614.
5 Zeng L, Fan C L, Zhu M, et al. Journal of Manufacturing Processes, 2020, 58(22), 19.
6 Lee J B, Yoon S I. Materials Chemistry & Physics, 2010, 122(1), 194.
7 Liu H J. Welding Metallurgy and Weldability, China Machine Press, China, 2007, pp. 52 (in Chinese).
刘会杰. 焊接冶金与焊接性, 机械工业出版社, 2007, pp. 52.
8 Fu R D, Qiu L, Wang C Y, et al. Journal of Central South University of Technology, 2005, 12(1), 22.
9 Staffan Hertzman, Rachel Jargelius Pettersson, Roland Blom, et al. ISIJ International, 1996, 36(7), 968.
10 Zhao L, Tian Z L, Peng Y, et al. Proceedings of Sino-Swedish Structural Materials Symposium, 2007, 14(5), 259.
11 Saluja R, Moeed K M. Materials Today: Proceedings, 2019, 18(22), 3876.
12 Shahi A S, Pandey S, et al. Journal of Materials Processing Technology, 2008, 196(32), 339.
13 Zhang L N, Ojo O A. Journal of Alloys and Compounds, 2020, 829, 154455.
14 Kamachi M U, Dayat R K. Materials and Corrosion-Werkstoffe und Korrosion, 1986, 37, 637.
15 Shao Z J, Cheng F J, Ding W B. Study on the GTAW welding process of 304L stainless steel with Ar-N2 mixed gas. Master's Thesis, Tianjin University, China, 2017 (in Chinese).
邵珠晶, 程方杰, 丁文斌. 304L不锈钢氩氮混合气GTAW焊接工艺研究. 硕士学位论文, 天津大学, 2017.
16 Cheng S H, Cheng F J, Zhang Y Q, et al. Journal of Tianjin University(Science and Technology), 2020, 53(8), 809 (in Chinese).
程尚华, 程方杰, 张一琪, 等. 天津大学学报(自然科学与工程技术版), 2020, 53(8), 809.
17 Li F X, Xiao X, Yin Y X, et al. Transactions of Materials and Heat Treatment, 2020, 41(7), 8 (in Chinese).
李春凤, 肖笑, 尹玉祥, 等. 材料热处理学报, 2020, 41(7), 8.
18 Hu J, Tsai H L. International Journal of Heat and Mass Transfer, 2007, 50(48), 808.
[1] 孙钢, 熊茹, 唐睿, 张乐福, 周张健. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 21060054-7.
[2] 王超, 陈琪, 肖述广, 董仕节, 谢志雄, 罗平, 解剑英. 316奥氏体不锈钢高频感应焊接技术及缺陷形成机理[J]. 材料导报, 2022, 36(19): 21020063-5.
[3] 徐秀清, 王玮, 陈之腾, 李云, 胡海军. 加氢换热器用321不锈钢、镍基合金825氢脆敏感性研究[J]. 材料导报, 2022, 36(14): 21030183-6.
[4] 陈志林, 曹驰, 杨瑞成, 牟鑫斌, 陈碧碧, 胡秋晨. 奥氏体不锈钢渗氮&物理气相沉积复合改性层的组织及性能[J]. 材料导报, 2021, 35(6): 6161-6166.
[5] 李连奇, 杨占兵. 奥氏体不锈钢辐照肿胀和偏析的研究进展[J]. 材料导报, 2021, 35(5): 5122-5129.
[6] 刘成龙, 唐正友, 马亮, 马婉婉, 郭昊东, 丁桦. 254SMo超级奥氏体不锈钢时效析出行为及析出相对其力学性能的影响[J]. 材料导报, 2021, 35(24): 24147-24151.
[7] 李福贵, 雷玉成, 李天庆, 朱强, 张雪宁. 奥氏体不锈钢焊接接头辐照偏析和辐照硬化的研究[J]. 材料导报, 2020, 34(4): 4098-4102.
[8] 栗卓新, 丛兴, 李红, Kim Hee Jin. 熔化极气体保护焊导电嘴载流磨损及使用寿命的研究进展[J]. 材料导报, 2020, 34(19): 19128-19133.
[9] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[10] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. 强碳化物形成元素与碳的配比关系和稳定化处理对310S奥氏体不锈钢析出相行为的影响[J]. 材料导报, 2019, 33(18): 3101-3106.
[11] 张旭昀, 郑冰洁, 郭斌, 吴戆, 王文泉, 王勇. 高氮奥氏体不锈钢中N与Cr、Mn、Mo键合性质研究*[J]. 《材料导报》期刊社, 2017, 31(18): 146-149.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed