Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 22010216-8    https://doi.org/10.11896/cldb.22010216
  高分子与聚合物基复合材料 |
具有分子间电荷转移效应的D-σ-A型热激活延迟荧光材料及其电致发光性能
姚静锋1, 李昊泽2, 吴平1, 谢凤鸣2, 胡英元1, 赵鑫1,*
1 苏州科技大学化学与生命科学学院,江苏 苏州 215009
2 苏州大学功能纳米与软物质研究院,江苏 苏州215123
D-σ-A Type Thermally Activated Delayed Fluorescent Emitters with Intermolecular Charge Transition Effect and Its Electroluminescence Properties
YAO Jingfeng1, LI Haoze2, WU Ping1, XIE Fengming2, HU Yingyuan1, ZHAO Xin1,*
1 College of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
下载:  全 文 ( PDF ) ( 10438KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 设计合成了三种D-σ-A型热激活延迟荧光(TADF)材料2-(4-(9H-咔唑-9-基)苯氧基)蒽-9,10-二酮(AQOPCZ)、2-(4-(二苯氨基)苯氧基)蒽-9,10-二酮(AQOPDPA)和2-(4-(9,9-二甲基吖啶-10(9H)-基)苯氧基)蒽-9,10-二酮(AQOPDMAC)。这三种材料均采用C-O σ键连接受体和供体,由于σ键阻断供体和受体之间的共轭,较好地实现了三种材料最高未占分子轨道(HOMO)和最低已占分子轨道(LUMO)轨道之间的分离,因此三种材料都获得了很小的三线态与单线态之间的能级差(ΔEST<0.1 eV)和显著的TADF特性。更重要的是,这三种材料与常见的TADF材料不同,它们几乎没有分子内电荷转换(intra-CT)效应,但都具有显著的分子间电荷转换(inter-CT)效应。由于这种强的inter-CT效应,三种TADF材料的荧光光谱在非掺杂薄膜中均显示出长波发射(580~652 nm),并且与溶液中的发射波长(552~574 nm)相比表现出显著的红移。基于这三种TADF材料的发光器件均表现出了较好的电致发光性能,其中,基于AQOPCZ的OLED展现出了最好的器件性能,其最大外量子效率(EQEmax)为6.07%,最大亮度为8 320 cd·m-2。本工作为长波TADF材料的设计、合成和研究提供了有益的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚静锋
李昊泽
吴平
谢凤鸣
胡英元
赵鑫
关键词:  有机发光二极管  热激活延迟荧光  分子间电荷转换  电致发光    
Abstract: Three D-σ-A type thermally activated delayed fluorescent (TADF) materials, AQOPCZ, AQOPDPA and AQOPDMAC, were designed and synthesized using C-O σ bond connecting acceptor and donor. All of the materials possess tiny ΔEST (<0.1 eV), distinct TADF characteristics and limited overlap of the molecular frontier orbitals because of the C-O σ bond and the distorted molecular structure. Compared with common TADF materials, these materials hardly have intramolecular charge transition (intra-CT) effect, but own outstanding intermolecular charge transition (inter-CT) effect. Due to inter-CT effect, three materials show long-wavelength emission (580—652 nm) in non-doped film. The fluorescence spectra of three materials in non-doped film exhibit remarkable red-shift compared with that in the solution (552—574 nm). Among three devices based on these emitters, the device employing AQOPCZ achieved best performance with maximum external quantum efficiencies of 6.07% and maximum luminance of 8 320 cd·m-2. This work enriched the kind of D-σ-A type TADF materials and the preparation methods of long-wavelength TADF materials.
Key words:  organic light-emitting diodes    thermally activated delayed fluorescence    intermolecular charge transition    electroluminescence
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  O621.22  
基金资助: 国家自然科学基金(21905048)
通讯作者:  *赵鑫,1988年毕业于河南师范大学化学系化学专业,1996年毕业于华中科技大学化学化工学院应用化学专业,获工学硕士学位。现为苏州科技大学教授、硕士研究生导师。主要从事有机光电功能材料的设计、合成及应用研究。在国内外重要学术期刊发表研究论文80余篇。获授权发明专利2项。zhaoxinsz@usts.edu.cn   
作者简介:  姚静锋,2019年6月于苏州科技大学获得学士学位。现为苏州科技大学硕士研究生,主要从事有机光电材料的合成与性能研究。
引用本文:    
姚静锋, 李昊泽, 吴平, 谢凤鸣, 胡英元, 赵鑫. 具有分子间电荷转移效应的D-σ-A型热激活延迟荧光材料及其电致发光性能[J]. 材料导报, 2023, 37(14): 22010216-8.
YAO Jingfeng, LI Haoze, WU Ping, XIE Fengming, HU Yingyuan, ZHAO Xin. D-σ-A Type Thermally Activated Delayed Fluorescent Emitters with Intermolecular Charge Transition Effect and Its Electroluminescence Properties. Materials Reports, 2023, 37(14): 22010216-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010216  或          http://www.mater-rep.com/CN/Y2023/V37/I14/22010216
1 Yu J L, Zheng Y Q, Tang J, et al. Materials Reports, 2020, 34(3), 05148 (in Chinese).
余俊乐, 郑燕琼, 唐杰, 等. 材料导报, 2020, 34(3), 05148.
2 Huang C, Zhang Y, Zhou J, et al. Advanced Optical Materials, 2020, 8(18), 2000727.
3 Rossi D, Palazzo D, Di Carlo A, et al. Advanced Electronic Materials, 2020, 6(8), 2000245.
4 Che W, Xie Y, Li Z. Asian Journal of Organic Chemistry, 2020, 9(9), 1262.
5 Baranov A Y, Berezin A S, Samsonenko D G, et al. Dalton Transactions, 2020, 49(10), 3155.
6 Hiraga Y, Kuwahara R, Hatta T. Tetrahedron, 2021, 86, 132049.
7 Li B, Wang Z, Su S J, et al. Advanced Optical Materials, 2019, 7(9), 1801496.
8 Tsai K W, Hung M K, Mao Y H, et al. Advanced Functional Materials, 2019, 29(15), 1901025.
9 Luo T, Lin Z, Li Z, et al. Organic Electronics, 2021, 88, 106003.
10 Uoyama H, Goushi K, Shizu K, et al. Nature, 2012, 492(7428), 234.
11 Dong X, Wang S, Gui C, et al. Tetrahedron, 2018, 74(4), 497.
12 Hiraga Y, Kuwahara R, Hatta T. Tetrahedron, 2021, 94, 132317.
13 Sun H, Tan X, Sang S, et al. Organic Electronics, 2020, 78, 105610.
14 Chai D, Zou Y, Xiang Y, et al. Chemical Communications, 2019, 55(100), 15125.
15 Gong X, Li P, Huang Y H, et al. Advanced Functional Materials, 2020, 30(16), 1908839.
16 Furue R, Matsuo K, Ashikari Y, et al. Advanced Optical Materials, 2018, 6(5), 1701147.
17 Chen J X, Wang K, Zheng C J, et al. Advanced Science, 2018, 5(9), 1800436.
18 Kim J H, Yun J H, Lee J Y. Advanced Optical Materials, 2018, 6(18), 1800255.
19 Hong G, Gan X, Leonhardt C, et al. Advanced Materials, 2021, 33(9), 2005630.
20 Goushi K, Yoshida K, Sato K, et al. Nature Photonics, 2012, 6(4), 253.
21 Geng Y, D’Aleo A, Inada K, et al. Angewandte Chemie-International Edition, 2017, 56(52), 16536.
22 Shi Y Z, Wang K, Li X, et al. Angewandte Chemie-International Edition, 2018, 57(30), 9480.
23 Zhang D D, Suzuki K, Song X Z, et al. ACS Applied Materials & Interfaces, 2019, 11(7), 7192.
24 Park H J, Lee H L, Lee H J, et al. Chemistry of Materials, 2019, 31(24), 10023.
25 Auffray M, Kim D H, Kim J U, et al. Chemistry-An Asian Journal, 2019, 14(11), 1921.
26 Yang T, Cheng Z, Li Z, et al. Advanced Functional Materials, 2020, 30(34), 2002681.
27 Guo R, Leng P, Zhang Q, et al. Dyes and Pigments, 2021, 184, 108781.
28 Shen Y F, Li M, Zhao W L, et al. Materials Chemistry Frontiers, 2021, 5(2), 834.
29 Zhou X, Xiang Y, Ni F, et al. Dyes and Pigments, 2020, 176, 108179.
30 Ma F, Cheng Y, Zhang X, et al. Dyes and Pigments, 2019, 166, 245.
31 Wu T L, Lo S H, Chang Y C, et al. ACS Applied Materials & Interfaces, 2019, 11(11), 10768.
32 Li W, Li B, Cai X, et al. Angewandte Chemie-International Edition, 2019, 58(33), 11301.
33 Nakagawa T, Ku S Y, Wong K T, et al. Chemical Communications, 2012, 48(77), 9580.
34 Zeng W, Zhou T, Ning W, et al. Advanced Materials, 2019, 31(33), 1901404.
35 Lee H L, Jang H J, Lee J Y. Journal of Materials Chemistry C, 2020, 8(30), 10302.
36 Zhang D, Song X, Cai M, et al. Advanced Materials, 2018, 30(7), 1705406.
37 Li H Z, Zhang D, Xie F M, et al. Dyes and Pigments, 2021, 188, 109210.
38 Huang F X, Wu P, Li H Z, et al. Organic Electronics, 2021, 96, 106245.
[1] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[2] 王达浩, 谢凤鸣, 魏怀鑫, 胡英元, 赵鑫. 双苯磺酰基苯类延迟荧光材料的合成及电致发光性质[J]. 材料导报, 2023, 37(4): 21060007-5.
[3] 卓明鹏, 俞燕君, 丁灵奕, 陈伟凡, 廖良生. 稀土发光配合物及其在有机发光二极管中的应用[J]. 材料导报, 2023, 37(3): 21060045-10.
[4] 余俊乐, 郑燕琼, 唐杰, 杨芳, 王超, 魏斌, 李喜峰, 石继锋. 大π共轭分子四苯基二苯并荧蒽及二茚并苝的有机光电器件研究进展[J]. 材料导报, 2020, 34(5): 5148-5157.
[5] 林拱立, 杨志文, 李万万. 磷化铟量子点的合成及其显示器件应用研究进展[J]. 材料导报, 2020, 34(23): 23057-23063.
[6] 周扬州, 钱磊, 章婷. 银纳米线及其透明导电膜的研究进展[J]. 材料导报, 2020, 34(21): 21081-21092.
[7] 赵思宇, 张祥, 卢伶, 张义, 赵青华. 具有聚集诱导发光性质的热活化延迟荧光材料综述[J]. 材料导报, 2020, 34(17): 17155-17167.
[8] 孙佳南,许辉. 热激发延迟荧光分子的受体基团研究进展[J]. 材料导报, 2020, 34(1): 1135-1145.
[9] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
[10] 谢凤鸣, 魏怀鑫, 张强, 周家宏, 赵鑫. 基于三苯基-1,3,5-均三嗪的星形双极性蓝色磷光主体材料的合成及性质[J]. 材料导报, 2019, 33(24): 4170-4173.
[11] 卢伶,张祥,赵青华. 热激活延迟荧光材料在有机电致发光器件中的研究进展[J]. 材料导报, 2019, 33(15): 2589-2601.
[12] 朱琦,李云辉,赵学森,耿爱芳,马玉芹. 新型有机电致荧光材料研究进展[J]. 材料导报, 2018, 32(19): 3473-3477.
[13] 刘萍, 曾葆青, 王亚雄, 汪江浩. 纳米线透明导电薄膜的制备及在光电器件中的应用*[J]. 《材料导报》期刊社, 2017, 31(7): 6-18.
[14] 宋志成, 刘代明, 刘卫东, 王庆康. QLED研究及显示应用进展[J]. 《材料导报》期刊社, 2017, 31(19): 122-128.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed