Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22010181-10    https://doi.org/10.11896/cldb.22010181
  无机非金属及其复合材料 |
高速铁路无砟轨道混凝土动态性能及其评价方法综述
温家馨1,2, 李化建1,*, 杨志强1, 李子春2, 黄法礼1, 王振1, 易忠来1, 谢永江1
1 中国铁道科学研究院集团有限公司铁道建筑研究所,北京 100081
2 中国铁道科学研究院研究生部,北京 100081
Dynamic Performance and Evaluation Method of High-speed Railway Ballastless Track Concrete
WEN Jiaxin1,2, LI Huajian1,*, YANG Zhiqiang1, LI Zichun2, HUANG Fali1, WANG Zhen1, YI Zhanglai1, XIE Yongjiang1
1 Railway Engineering Research Institute,China Academy of Railway Science Corporation Limited,Beijing 100081,China
2 Postgraduate Department,China Academy of Railway Sciences,Beijing 100081,China
下载:  全 文 ( PDF ) ( 6039KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高速铁路无砟轨道是高速列车运行的直接承载结构。在高速列车动荷载的持续作用下,无砟轨道内部发生动态损伤,导致宏观服役性能衰减,影响高速铁路结构耐久性和运营安全性。根据高速铁路无砟轨道混凝土正常服役条件下承受高频疲劳荷载,轨道不平顺时还要承受冲击荷载的服役特征,本文总结了无砟轨道混凝土承受动荷载的作用特点,从标准层面梳理了高速铁路无砟轨道混凝土疲劳性能和冲击性能的技术要求,指出了无砟轨道动态性能评价方法的适用性和局限性,以期为高速铁路无砟轨道混凝土动态性能评价及长寿命无砟轨道设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温家馨
李化建
杨志强
李子春
黄法礼
王振
易忠来
谢永江
关键词:  高速铁路  无砟轨道  疲劳性能  冲击性能  评价方法    
Abstract: Ballastless track concrete structure is the key position for bearing the dynamic loads induced by high-speed running train.With the continuous effects of periodic dynamic loads,internal damage occurs and service performances of ballastless track structure are decreased,leading to the durability issue of ballastless track and insecurity risk of the running train.According to the service characteristics of ballastless track concrete,high-frequency fatigue loads are the main types of dynamic loads under normal service state,however,impact loads cannot be ignored when the track is irregular.This paper summarizes the characteristics of dynamic loads,and then illustrates the requirements for both fatigue and impact performances of ballastless track concrete.Meanwhile,the applicability and limitations of the dynamic performance evaluation method of ballastless track are further elaborated,aiming to provide certain suggestions and directions for the evaluation of service performances and long service life design of ballastless track.
Key words:  high-speed railway    ballastless track    fatigue performance    impact performance    evaluation method
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  U214.1  
基金资助: 国家自然科学基金(高铁联合基金)(U1934206);国家自然科学基金(52178260)
通讯作者:  *李化建,中国铁道科学研究院研究员、博士研究生导师,主要从事固体废弃物建材资源化、高速铁路新型混凝土及其结构耐久性方面的应用基础研究。主持国家自然科学基金、国家重点研发计划、省部级科研课题30余项,编制标准16部,研究成果获国家科技进步二等奖1项、技术发明二等奖1项,中国专利优秀奖2项,省部级科技进步特等奖3项、一等奖7项。chinasailor@163.com   
作者简介:  温家馨,2014年9月至2018年7月于北京科技大学获得工学学士学位。现为中国铁道科学研究院硕士研究生,在李化建研究员的指导下进行研究。主要从事高铁高性能混凝土及其结构耐久性领域的研究。
引用本文:    
温家馨, 李化建, 杨志强, 李子春, 黄法礼, 王振, 易忠来, 谢永江. 高速铁路无砟轨道混凝土动态性能及其评价方法综述[J]. 材料导报, 2023, 37(20): 22010181-10.
WEN Jiaxin, LI Huajian, YANG Zhiqiang, LI Zichun, HUANG Fali, WANG Zhen, YI Zhanglai, XIE Yongjiang. Dynamic Performance and Evaluation Method of High-speed Railway Ballastless Track Concrete. Materials Reports, 2023, 37(20): 22010181-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010181  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22010181
1 American Concrete Institute. Considerations for design of concrete structures subjected to fatigue loading: ACI 215R-97, American Concrete Institute, America, 1997, pp. 4.
2 Ministry of Housing and Urban-rural Development of the People’s Republic of China. Unified standard for reliability design of railway engineering structures: GB 50216-2019, China Construction Industry Press, China, 2019, pp. 32(in Chinese).
中华人民共和国住房和城乡建设部. 铁路工程结构可靠性设计统一标准: GB 50216-2019, 中国建筑工业出版社, 2019, pp. 32.
3 Ministry of Railways of the People’s Republic of China. Code for design of high speed railway: TB/T 10621-2014, China Railway Publishing House, China, 2014, pp. 80(in Chinese).
中华人民共和国铁道部. 高速铁路设计规范: TB/T 10621-2014, 中国铁道出版社, 2014, pp. 80.
4 Ministry of Railways of the People’s Republic of China. Code for durabi-lity design on concrete structure of railway: TB 10005-2010, China Railway Publishing House, China, 2010, pp. 40(in Chinese).
中华人民共和国铁道部. 铁路混凝土结构耐久性设计规范: TB 10005-2010, 中国铁道出版社, 2010, pp. 40.
5 Maekawa K, Gebreyouhannes E, Mishima T. Journal of Advanced Concrete Technology, 2006, 4(3), 445.
6 Zhu S, Cai C. In: Conference Record of the 3rd International Conference on Transportation and Traffic Engineering, Chengdu, 2011, pp. 1714.
7 Wang Y, Li J. International Journal of Fatigue, 2021, 153, 106508.
8 Hu S T. Research on key technologies of 400km/h high speed railway-sub report 1: Research on key technologies of public works engineering, Railway Engineering Research Institute, China Academy of Railway Science, China, 2018, pp. 2(in Chinese).
胡所亭. 400km/h高速铁路关键技术研究—分报告之一: 工务工程关键技术研究, 中国铁道科学研究院铁道建筑研究所, 2018, pp. 2.
9 Zhao G T. Study on temperature field monitoring and temperature deformation control measures of CRTS I slab and double block ballastless track of high-speed railway, China Academy of Railway Science, China, 2015, pp. 4(in Chinese).
赵国堂. 高速铁路CRTS I 型板式和双块式无砟轨道温度场监测及温度变形控制措施研究, 中国铁道科学研究院, 2015, pp. 4.
10 Zhao Y M. Deepening Experimental Research on CRTS Ⅲ slab ballastless track system of high-speed railway, China Academy of Railway Science, China, 2013, pp. 2(in Chinese).
赵有明. 高速铁路CRTS Ⅲ型板式无砟轨道系统深化实验研究, 中国铁道科学研究院, 2013, pp. 2.
11 Ren J J, Deng S J, Yan Y F, et al. Journal of Southwest Jiaotong University, 2019, 54(6), 1210(in Chinese).
任娟娟, 邓世杰, 闫亚飞, 等. 西南交通大学学报, 2019, 54(6), 1210.
12 Song Y P. Fatigue performance and design principle of concrete structure, Machinery Industry Press, China, 2006, pp. 3(in Chinese).
宋玉普. 混凝土结构的疲劳性能及设计原理, 机械工业出版社, 2006, pp. 3.
13 Lee M K, Barr B I G. Cement and Concrete Composites, 2004, 26(4), 299.
14 Popp K, Kruse H, Kaiser I. Vehicle System Dynamics, 1999, 31(5-6), 423.
15 Li H J, Xie Y J. Railway Engineering, 2016(2), 1(in Chinese).
李化建, 谢永江. 铁道建筑, 2016(2), 1.
16 Liu D. Durability of ballasteless slabtrack subjected to dynamic loadand prediction of fatiguedurability. Ph. D. Thesis, Southwest Jiaotong University, China, 2017(in Chinese).
刘丹. 振动荷载下无砟轨道耐久性特性与疲劳耐久性预测研究. 博士学位论文, 西南交通大学, 2017.
17 Lu J, Zhu K, Tian L, et al. Construction Building Materials, 2017, 152, 847.
18 Sun W, Jiang J Y, Wang J, et al. Materials China, 2009, 28(11), 19(in Chinese).
孙伟, 蒋金洋, 王晶. 中国材料进展, 2009, 28(11), 19.
19 Saito M, Ishimori H J C. Cement and Concrete Research, 1995, 25(4), 803.
20 Zhai W M. Journal of the China Railway Society, 1997, 19(4), 16(in Chinese).
翟婉明. 铁道学报, 1997, 19(4), 16.
21 Hu S T. Railway Engineering, 2015(10), 26(in Chinese).
胡所亭. 铁道建筑, 2015(10), 26.
22 Mao H. Study of load spectrum compiling method of high speed train. Master’s Thesis, Beijing Jiaotong University, China, 2009(in Chinese).
毛贺. 高速列车载荷谱编制方法的研究. 硕士学位论文, 北京交通大学, 2009.
23 State Railway Administration of China. Code for train load diagrams: TB/T 3466-2016, China Railway Publishing House, China, 2016, pp. 3(in Chinese).
中国国家铁路局. 列车荷载图式:TB/T 3466-2016, 中国铁道出版社, 2016, pp. 3.
24 Wei H L, Lian S L, Zhou Y. China Railway Science, 2011, 32(6), 22(in Chinese).
韦红亮, 练松良, 周宇. 中国铁道科学, 2011, 32(6), 22.
25 FrÖhling R D. Vehicle System Dynamics, 1998, 29(S1), 30.
26 Liu Y Q. Study on frequency and spectrum characteristics of loads of high-speed vehicle. Master’s Thesis, Beijing Jiaotong University, China, 2012(in Chinese).
刘永乾. 高速列车载荷频率及载荷谱特性研究. 硕士学位论文, 北京交通大学, 2012.
27 Zhang Y. Study on load spectrum of 400 km/h EMU car body. Master’s Thesis, Beijing Jiaotong University, China, 2019(in Chinese).
张莹. 400 km/h 高速动车组车体载荷谱研究. 硕士学位论文, 北京交通大学, 2019.
28 Li Z X, Liu Z F. Journal of Tianjin University(Science and Technology), 2015, 48(10), 853(in Chinese).
李忠献, 刘泽锋. 天津大学学报(自然科学与工程技术版), 2015, 48(10), 853.
29 Wu Z, Liu X Y. Railway Engineering, 2008(12), 77(in Chinese).
伍曾, 刘学毅. 铁道建筑, 2008(12), 77.
30 Yao M C. China Concrete, 2013(2), 49(in Chinese).
姚明初. 混凝土世界, 2013(2), 49.
31 Ministry of Housing and Urban-rural Development of the People’s Republic of China. Standard for test methods for long term performance and durability of ordinary concrete: GB/T 50082-2009, China Construction Industry Press, China, 2009, pp. 67(in Chinese).
中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082-2009, 中国建筑工业出版社, 2009, pp. 67.
32 Wei J, Li S L, Dong R Z, et al. Journal of Hunan University(Natural Sciences), 2016, 43(7), 57(in Chinese).
卫军, 李松林, 董荣珍, 等. 湖南大学学报(自然科学版), 2016, 43(7), 57.
33 Ministry of Railways of the People’s Republic of China. Concrete for railway construction: TB/T 3275-2018, China Railway Publishing House, China, 2018, pp. 14(in Chinese).
中华人民共和国铁道部. 铁路混凝土: TB/T 3275-2018, 中国铁道出版社, 2018, pp. 14.
34 Ministry of Railways of the People’s Republic of China. Cement asphalt mortar for CRTS I slab track of high-speed railway: Q/CR 469-2015, China Railway Publishing House, China, 2015, pp. 5(in Chinese).
中华人民共和国铁道部. 高速铁路CRTS I型板式无砟轨道用水泥乳化沥青砂浆: Q/CR 469-2015, 中国铁道出版社, 2015, pp. 5.
35 Li Q B, Lu P Y, Zhang L X. Shuili Xuebao, 2004(4), 21(in Chinese).
李庆斌, 吕培印, 张立翔. 水利学报, 2004(4), 21.
36 Wang R M, Zhao G F, Song Y P. Journal of Civil Engineering, 1991, 4(in Chinese).
王瑞敏, 赵国藩, 宋玉普. 土木工程学报, 1991, 4, 38.
37 Xie H P, Ju Y, Dong Y L. Mechanics in Engineering, 1997, 19(2), 1(in Chinese).
谢和平, 鞠杨, 董毓利. 力学与实践, 1997, 19(2), 1.
38 Wu B, Wei W, Zheng Z P, et al. Journal of Railway Science and Engineering, 2019, 16(1), 1(in Chinese).
吴斌, 魏炜, 曾志平, 等. 铁道科学与工程学报, 2019, 16(1), 1.
39 Wan Z A, Ma K L, Long G C, et al. Journal of Railway Science and Engineering, 2019, 16(3), 557(in Chinese).
万镇昂, 马昆林, 龙广成, 等. 铁道科学与工程学报, 2019, 16(3), 557.
40 Ma K L, Wan Z A, Long G C, et al. Journal of the China Railway Society, 2020, 42(11), 139(in Chinese).
马昆林, 万镇昂, 龙广成, 等. 铁道学报, 2020, 42(11), 139.
41 Huang X Z, Chen H N, Liu Y, et al. Chinese Journal of Applied Mechanics, 2018, 35(5), 1131(in Chinese).
黄兴震, 陈红鸟, 刘轶, 等. 应用力学学报, 2018, 35(5), 1131.
42 Bai X H. Application of Digital Image Correlation Method in Study of Material Deformation. Master’s Thesis, Northeastern University, China, 2011(in Chinese).
白晓虹. 数字图像相关(DIC)测量方法在材料变形研究中的应用. 硕士学位论文, 东北大学, 2011.
43 Wang D Q, Chen H N, Huang X Z, et al. Journal of Guangxi University(Natural Science Edition), 2019, 44(6), 1505(in Chinese).
王德强, 陈红鸟, 黄兴震, 等. 广西大学学报, 2019, 44(6), 1505.
44 Ministry of Railways of the People’s Republic of China. Fatigue test method for prestressed concrete sleepers: TB/T 1878-2002, China Railway Publishing House, China, 2002, pp. 1(in Chinese).
中华人民共和国铁道部. 预应力混凝土枕疲劳试验方法:TB/T 1878-2002, 中国铁道出版社, 2002, pp. 1.
45 Ministry of Railways of the People’s Republic of China. Concrete slab for CRTS II ballastless track: TB/T 3399-2015, China Railway Publishing House, China, 2015, pp. 1(in Chinese).
中华人民共和国铁道部. 客运专线铁路CRTS II型板式无砟轨道混凝土轨道板: TB/T 3399-2015. 中国铁道出版社, 2015, pp. 1.
46 Ministry of Railways of the People’s Republic of China. Bending fatigue test method for prestressed concrete simply supported beams: TB/T 2326-1992, China Railway Publishing House, China, 1992, pp. 1(in Chinese).
中华人民共和国铁道部. 预应力混凝土简支梁弯曲疲劳试验方法: TB/T 2326-1992. 中国铁道出版社, 1992, pp. 1.
47 Onoue K, Matsushita H. Construction Building Materials, 2012, 37, 82.
48 Zhou K. Research on interfacial crack expansion of twin-blocktrack under the trainload and water coupling. Master’s Thesis, Southwest Jiaotong University, China, 2014(in Chinese).
周珂. 列车与水耦合作用下双块式无砟轨道表面裂纹扩展机理研究. 硕士学位论文, 西南交通大学, 2014.
49 Wang M Z, Cai C B, Zhang J W, et al. Journal of the China Railway Society, 2021, 43(4), 117(in Chinese).
王明昃, 蔡成标, 张嘉伟, 等. 铁道学报, 2021, 43(4), 117.
50 Hsu T T. Materiaux et Construction, 1984, 17(1), 51.
51 Ding W H, Zhu L, Huang L, et al. CT Theory and Applications, 2021, 30(2), 170(in Chinese).
丁卫华, 朱琳, 黄力, 等. CT 理论与应用研究, 2021, 30(2), 170.
52 Zhu J S, Song Y P. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(13), 2230(in Chinese).
朱劲松, 宋玉普. 岩石力学与工程学报, 2004, 23(13), 2230.
53 Yang J, Wang H D, Cheng L. Water Resources and Power, 2019, 37(11), 127(in Chinese).
杨杰, 王浩多, 程琳. 水电能源科学, 2019, 37(11), 127.
54 Lyu X B, Wu J Y. Theory and application of impact elastic wave, China Water Resources and Hydropower Press, China, 2016, pp. 3(in Chinese).
吕小斌, 吴佳晔. 冲击弹性波理论与应用, 中国水利水电出版社, 2016, pp. 3.
55 Ministry of Housing and Urban-rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Standard for test methods of engineering rock mass: GB/T50266-2013, China Planning Press, China, 2013, pp. 54(in Chinese).
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 工程岩体试验方法标准: GB/T 50266-2013, 中国计划出版社, 2013, pp. 54.
56 李化建, 温家馨, 杨志强, 等. 中国专利, CN 202111635742. 8. 2021.
57 Wang Z, Gao Z, Wang Y, et al. Construction Building Materials, 2015, 100, 129.
58 Noorsuhada M. Construction Building Materials, 2016, 112, 424.
59 Yuyama S, Yokoyama K, Niitani K, et al. Construction and Building Materials, 2007, 21(3), 491.
60 Yuyama S, Li Z W, Yoshizawa M, et al. International Independent Nondestructive Testing and Evaluation, 2001, 34(6), 381.
61 Wang C, Zhang Y, Ma A. Journal of Materials in Civil Engineering, 2011, 23(7), 953.
62 Suchorzewski J, Prieto M, Mueller U. Construction Building Materials, 2020, 262, 120871.
63 Wang X Y, Zhou X W, Zhang W, et al. Railway Survey, 2020, 46(4), 123(in Chinese).
汪祥宇, 周锡武, 张稳, 等. 铁道勘察, 2020, 46(4), 123.
64 Ren X D, Liu K, Wei G T, et al. Journal of Building Structures, 2017, 38(3), 141(in Chinese).
任晓丹, 刘凯, 魏公涛, 等. 建筑结构学报, 2017, 38(3), 141.
65 Wu J Y, Li J, Faria R. International journal of Solids Structures, 2006, 43(3-4), 583.
66 Yan D M, Lin G. Water Science and Engineering Technology, 2006(4), 1(in Chinese).
闫东明, 林皋. 水科学与工程技术, 2006(4), 1.
67 Gorham D, Wu X. Measurement Science and Technology, 1996, 7(9), 1227.
68 Xu X, Ma T, Ning J. Construction Building Materials, 2019, 223, 679.
69 Malvar L J, Ross C A. American Concrete Institute Materials Journal, 1998, 95, 735.
70 Xie Y J, Wang M, Ma K L, et al. Journal of Building Materials, 2020, 6(3), 522(in Chinese).
谢友均, 王猛, 马坤林, 等. 建材学报, 2020, 6(3), 522.
71 Long G C, Li N, Xie Y J, et al. Journal of Railway Science and Engineering, 2018, 15(6), 1363(in Chinese).
龙广成, 李宁, 谢友均, 等. 铁道科学与工程学报, 2018, 15(6), 1363.
72 Long G C, Li N, Xue Y Y, et al. Journal of the Chinese Ceramic Society, 2016, 44(8), 1081(in Chinese).
龙广成, 李宁, 薛逸骅, 等. 硅酸盐学报, 2016, 44(8), 1081.
73 American Concrete Institute. Report on the measurement of fresh state pro-perties and fiber dispersion of fiber-reinforced concrete: ACI 544. 2R-2017, American Concrete Institute, America, 2017, pp. 7.
74 China Engineering Construction Standardization Association. Standard for test methods of fiber reinforced concrete: CECS 13-2009, China Planning Press, China, 2009, pp. 75(in Chinese).
中国工程建设标准化协会. 纤维混凝土试验方法标准: CECS 13-2009. 中国计划出版社, 2009, pp. 75.
75 Xie Y J, Zeng X H, Deng D H, et al. Journal of Building Materials, 2010, 13(4), 483(in Chinese).
谢友均, 曾晓辉, 邓德华, 等. 建筑材料学报, 2010, 13(4), 483.
76 Li Q H, Xu S L. Engineering Mechanics, 2009(A02), 23(in Chinese).
李庆华, 徐世烺. 工程力学, 2009(A02), 23.
77 Wu S S. Research on void detection method of CRTS Ⅱ slab track based on transient impulse response. Master’s Thesis, Shijiazhuang Tiedao University, China, 2018(in Chinese).
武思思. 基于瞬态冲击响应的CRTS Ⅱ型板式无砟轨道脱空检测方法研究. 石家庄铁道大学, 2018.
[1] 杨志强, 李化建, 温家馨, 董昊良, 易忠来, 黄法礼, 王振. 高速铁路无砟轨道水泥基材料与结构的疲劳损伤及服役寿命综述[J]. 材料导报, 2023, 37(S1): 22100219-8.
[2] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[3] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[4] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[5] 罗志强, 赖家美, 黄志超, 莫明智, 李美艳. 缝合碳纤维泡沫夹芯复合材料反复低速冲击性能研究[J]. 材料导报, 2022, 36(19): 21050268-8.
[6] 刘成豪, 陈芙蓉. 超声冲击强化7A52铝合金VPPA-MIG焊接接头的疲劳性能[J]. 材料导报, 2022, 36(15): 21030115-5.
[7] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[8] 刘扬, 曾丹, 曹磊, 王达. 钢-UHPC组合结构桥梁研究进展[J]. 材料导报, 2021, 35(3): 3104-3113.
[9] 付磊, 林莉, 罗云蓉, 谢文玲, 王清远, 李辉. 梯度纳米结构材料疲劳性能研究进展[J]. 材料导报, 2021, 35(3): 3114-3121.
[10] 李款, 解建光, 潘友强, 张辉. 基于活性增韧剂改善冷拌环氧混合料路用性能[J]. 材料导报, 2021, 35(22): 22200-22205.
[11] 王森, 赖家美, 阮金琦, 胡根泉, 黄志超. 不同粒子改性环氧树脂基碳纤维复合材料低速冲击及冲击后压缩性能[J]. 材料导报, 2021, 35(2): 2178-2184.
[12] 杨名, 顾一帆, 吴玉锋, 潘德安, 龚裕. 面向固废资源化的能源-环境-经济综合绩效评价研究进展[J]. 材料导报, 2021, 35(17): 17103-17110.
[13] 赵毅, 秦旻, 文凯琪, 梁乃兴, 王亚茹. 沥青路面超疏水抗凝冰材料研究进展[J]. 材料导报, 2021, 35(1): 1141-1153.
[14] 刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报, 2020, 34(8): 8131-8135.
[15] 赵毅, 杨旋, 郝增恒, 梁乃兴, 田于锋. 沥青混合料均匀性数字图像评价方法研究进展[J]. 材料导报, 2020, 34(23): 23088-23099.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed