Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21090091-6    https://doi.org/10.11896/cldb.21090091
  无机非金属及其复合材料 |
压力下PdH2结构稳定性和力学性能的第一性原理研究
刘泽良1,2,3,*, 李慧剑1,2
1 河北省重型装备与大型结构力学可靠性重点实验室,河北 秦皇岛 066004
2 燕山大学建筑工程与力学学院,河北 秦皇岛 066004
3 乌普萨拉大学物理与天文系,瑞典 乌普萨拉 S75121
First Principles Study on Structural Stability and Mechanical Properties of PdH2 Under Pressure
LIU Zeliang1,2,3,*, LI Huijian1,2
1 Hebei Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures, Qinhuangdao 066004, Hebei, China
2 College of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao 066004, Hebei, China
3 Department of Physics and Astronomy, Uppsala University, Uppsala S75121, Sweden
下载:  全 文 ( PDF ) ( 5397KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铂族金属的氢化物由于许多有利的性质而极具吸引力。特别是,钯-氢体系因储氢能力、动力学、循环行为、催化和超导等特性得到了广泛关注。不同于其他铂族金属的氢化物,二氢化钯的稳定结构至今为止鲜有报道。本工作基于密度泛函理论的从头计算,研究了压力下二氢化钯潜在结构的稳定性和力学性能。结果表明:Fm-3m相在环境压力下是热力学最稳定相,且满足动力学稳定性和弹性稳定性判据。随着结构的压缩,压力为25.5 GPa时,Fm-3m相转变为力学非稳定结构。P63mc相为压力下的动力学和力学稳定相,压力大于10 GPa下的P63mc相表现出动力学稳定性,压力为5.5~23.8 GPa时,P63mc相满足弹性稳定性判据。当压力大于75 GPa时,P63mc相为热力学最稳定相。生成焓计算表明,形成的PdH2会向分解为Pd和H2的方向反应。因此,高氢浓度的P63mc相PdH2为压力下的亚稳结构。这项工作为高氢浓度的PdH2合成提供理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘泽良
李慧剑
关键词:  二氢化钯  压力  结构稳定性  力学性能    
Abstract: The hydrides of platinum group metals are highly attractive due to a number of favorable properties. Especially, the palladium hydrogen system has attracted extensive attention for its hydrogen storage capacity, kinetics, cyclic behavior, catalysis and superconductivity properties. Different from other platinum group metal hydrides, the stable structure of Pd H2 has been rarely reported so far. In this work, the structural stabi-lity and mechanical properties of the potential PdH2 under pressure were studied, based on the ab initio calculation of density functional theory (DFT). The results show that the Fm-3m phase is the most stable phase in thermodynamics at ambient pressure, and it meets the criteria of dynamic stability and elastic stability. With the compression of the structure, when the pressure up to 25.5 GPa, the structure transfer to mechanical instability. The P63mc phase is a dynamic and mechanical stable phase under pressure, which shows dynamic stability at pressures greater than 10 GPa and elastic stability under the pressure between 5.5 GPa and 23.8 GPa. When the pressure is greater than 75 GPa, the P63mc phase is the most thermodynamic stable. The formation enthalpy indicates that when PdH2 is formed, it will decompose into Pd and H2. Therefore, the P63mc PdH2 with high hydrogen concentration is a metastable structure under pressure. This work provides a theoretical reference for the synthesis of PdH2 with high hydrogen concentration.
Key words:  palladium dihydride    pressure    structural stability    mechanical property
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  O773.2  
  O562.1  
基金资助: 中国国家留学基金管理委员会项目(201708130109);燕山大学基础创新科研培育项目(2021LGQN032)
通讯作者:  * 刘泽良,燕山大学讲师。2009年9月至2020年6月,在燕山大学获得工程力学专业工学学士学位和工学博士学位,毕业后留校任教。主要研究方向为环境友好型储氢材料,轻质、高强、结构功能一体化设计。在国内外学术期刊上发表论文10余篇。liuzeliang@ysu.edu.cn   
引用本文:    
刘泽良, 李慧剑. 压力下PdH2结构稳定性和力学性能的第一性原理研究[J]. 材料导报, 2023, 37(12): 21090091-6.
LIU Zeliang, LI Huijian. First Principles Study on Structural Stability and Mechanical Properties of PdH2 Under Pressure. Materials Reports, 2023, 37(12): 21090091-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090091  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21090091
1 Graham T. Proceedings of the Royal Society of London, 1869, 17, 212.
2 Manchester F D, San-Martin A, Pitre J M. Journal of Phase Equilibria, 1994, 15(1), 62.
3 Setayandeh S S, Webb C J, Gray E M A. Progress in Solid State Chemistry, 2020, 60, 100285.
4 Zhou X W, Heo T W, Wood B C, et al. Journal of Applied Physics, 2018, 123(22), 225105.
5 Sarac B, Ivanov Y P, Karazehir T, et al. Materials Horizons, 2019, 6(7), 1481.
6 Schirber J E, Northrup Jr C J M. Physical Review B, 1974, 10(9), 3818.
7 Syed H M, Gould T J, Webb C J, et al. arXiv Preprint arXiv, DOI:10. 48550/arXiv. 1608. 01774.
8 Nygren L A, Leisure R G. Physical Review B, 1988, 37(11), 6482.
9 Greenwood N N, Earnshaw A. Chemistry of the elements (2nd ed.), Butterworth-Heinemann, UK, 1997, pp.1150.
10 Kawae T, Inagaki Y, Wen S, et al. Journal of the Physical Society of Japan, 2020, 89(5), 051004.
11 Kanagaprabha S, Rajeswarapalanichamy R. Journal of Materials Science Research and Reviews, 2018, 1(2), 1.
12 Tripodi P, Di Gioacchino D, Vinko J D. Physica C:Superconductivity, 2004, 408, 350.
13 Houari A, Matar S F, Eyert V. Journal of Applied Physics, 2014, 116, 173706.
14 Akiba H, Kofu M, Kobayashi H, et al. Journal of the American Chemical Society, 2016, 138(32), 102383.
15 Wulff H, Quaas M, Deutsch H, et al. Thin Solid Films, 2015, 596, 185.
16 Jansonius R P, Schauer P A, Dvorak D J, et al. Angewandte Chemie International Edition, 2020, 59(29), 12192.
17 Li B, Ding Y, Kim D Y, et al. Proceedings of the National Academy of Sciences, 2011, 108(46), 18618.
18 Scheler T, Marqués M, Konôpková Z, et al. Physical Review Letters, 2013, 111, 215503.
19 Pépin C M, Dewaele A, Geneste G, et al. Physical Review Letters, 2014, 113, 265504.
20 Wei S H, Zunger A. Solid State Communications, 1990, 73(5), 327.
21 Isaeva L E, Bazhanov D I, Isaev E I, et al. International Journal of Hydrogen Energy, 2011, 36, 1254.
22 Long D, Li M, Meng D, et al. International Journal of Hydrogen Energy, 2018, 43(39), 18372.
23 Kuzovnikov M A, Tkacz M. International Journal of Hydrogen Energy, 2017, 42(1), 340.
24 Yang X, Li H, Ahuja R, et al. Scientific Reports, 2017, 7(1), 3520.
25 Wunderlich W, Tanemura M. Advances in Solid State Physics, 2003, 43, 171.
26 Liu Z L, Rajeev A, Li H J, et al. Scientific Reports, 2020, 10(1), 8037.
27 Hong J, Bae J H, Jo H, et al. Nature, 2022, 603, 631.
28 Kohn W, Sham L J. Physics Review, 1965, 140, A1133.
29 Clark S J. Zeitschrift für Kristallographie-Crystalline Mater, 2005, 220, 567.
30 Blöchl P E. Physics Review B, 1994, 50, 17953.
31 Perdew J P, Burke K, Ernzerhof M. Physics Review Letter, 1996, 77, 3865.
32 Togo A, Tanaka I. Scripta Materialia, 2015, 108, 1.
33 Wei S H, Zunger A. Journal of Fusion Energy, 1990, 9(4), 367.
34 Le Page Y, Saxe P. Physics Review B, 2002, 65, 104104.
35 Mouhat F, Coudert F X. Physics Review B, 2014, 90, 224104.
36 Sin’Ko G, Smirnov N. Journal of Physics:Condensed Matter, 2002, 14, 6989.
37 Asker C, Vitos L, Abrikosov I A. Physical Review B, 2009, 79(21), 214112
38 Goncharov A F, Gauthier M, Antonangeli D, et al. Physical Review B, 2017, 95(21), 214104.
39 Voigt W. Lehrbuch de Kristallphysik, Terubner, 1928, 40, 2856.
40 Reuss A. Zamm-Zeitschrift fur Angewandte Mathematik und Mechanik, 1929, 9, 49.
41 Hill R. Proceedings of the Physical Society(Section A), 1952, 65(5), 349.
42 Pugh S F.The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367), 823.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[7] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[8] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[9] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[10] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[11] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[12] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[13] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[14] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[15] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed