Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21080277-13    https://doi.org/10.11896/cldb.21080277
  高分子与聚合物基复合材料 |
室内空气中甲醛脱除技术及其应用进展
辛思甜, 聂龙辉
湖北工业大学材料与化学工程学院, 武汉 430068
A Review of Indoor Formaldehyde Removal Techniques and Their Applications
XIN Sitian, NIE Longhui
College of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
下载:  全 文 ( PDF ) ( 7332KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 甲醛(HCHO)是主要室内污染物之一,脱除室内空气中超标的甲醛对人体健康至关重要。本文对甲醛脱除技术(物理吸附法、化学吸附法、热催化氧化法、光催化法、等离子法等)进行了归纳总结,介绍了这些甲醛脱除方法的技术原理、研究现状,及其在空气净化器中的应用。其中,吸附法因方法简单、成本低而应用最广,但它存在易吸附饱和、需要再生或定期更换吸附剂的问题,发展超大吸附量且易再生的吸附材料是该技术未来的发展方向;热催化氧化法研究最多,其中负载型贵金属催化剂室温甲醛脱除效率最高,应用较多,但因价格昂贵而限制了它的实际应用,制备高效、耐用、低成本的催化剂是其应用的关键;等离子体法对各种挥发性有机物(VOCs)都有较高的脱除效率,因此,特别适用于甲醛与其他多种挥发性有机物(VOCs)共存且浓度较高的场合(如家具厂等),但它还存在产生O3、CO等副产物而产生的潜在二次污染问题,要消除这些副产物还需要额外的催化床层;光催化法对低浓度甲醛具有较高的脱除效率,适用于阳光充足、甲醛浓度较低的场合(如阳光充足的密闭玻璃房),发展高效、稳定、可见光响应的光催化材料是该技术未来的发展方向。后两者因设备要求高而使得它们应用受限。由于室内空气中甲醛与颗粒物、其他VOCs共存,将吸附、过滤与催化法结合在空气净化器甲醛脱除应用中具有巨大应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
辛思甜
聂龙辉
关键词:  甲醛  脱除技术  应用  空气净化器    
Abstract: Formaldehyde (HCHO) is one of the major pollutants in indoor air; therefore, its removal is vital to safeguarding human health since people spend most of their time indoors. Various methods have been developed for the removal of indoor HCHO, including physical adsorption, chemical adsorption, thermocatalysis, photocatalysis, plasma-based methods, and microbial purification. In this review, the principles, advantages, and disadvantages of these methods as well as their applications in air purification are summarized. Among the abovementioned methods, physical adsorption is the most widely applied because of its simplicity and low cost. However, the main disadvantage of this method is the low adsorption saturation level of most adsorbents, resulting in regular regeneration/replacement of the adsorbent, which in turn limits the application of this method. The development of novel adsorbents with high adsorption capacities which are easy to regenerate is the future direction for physical adsorption. Thermocatalysis is the most extensively investigated approach in recent years. Supported noble metal catalysts achieve higher conversions of HCHO to carbon dioxide and water at room temperature than non-noble metal catalysts, which justifies their widespread use in air purifiers. However, the high costs of noble metals limit their practical application in this regard. The synthesis of highly efficient, durable, and low-cost catalysts is very important to use thermocatalysis in the removal of HCHO. Plasma-based methods achieve high removal efficiencies for HCHO and various other volatile organic compounds (VOCs), making them specifically suitable for the removal of HCHO that coexists with a high concentration of VOCs in places such as furniture factories. However, the application of plasma-based methods can cause secondary pollution due to the formation of ozone, carbon monoxide, and other by-products. Additional catalytic beds are often required to eliminate these by-products. Photocatalysis offers a high removal efficiency for low concentrations of HCHO; therefore, it is suitable for application in places that receive abundant sunshine and have low concentrations of HCHO (such as closed glass rooms receiving abundant sunshine). The development of highly efficient, stable, and visible-light-responsive photocatalytic materials is the future direction for photocatalysis. Additionally, the high equipment requirements of plasma and photocatalysis restrict their vast practical application. Owing to the coexistence of HCHO with particulate matter and other VOCs in indoor air, the combination of adsorption, filtration, and thermocatalysis has important application potential for the removal of HCHO in air purifiers.
Key words:  HCHO    removal technique    application    air purifier
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  O643.3  
基金资助: 国家自然科学基金(51572074);绿色轻工材料湖北省重点实验室开放课题(201907B09;201710A12)
通讯作者:  聂龙辉,通信作者,湖北工业大学材料与化学工程学院教授、硕士研究生导师。1998年6月本科毕业于南昌大学生命科学与食品工程学院,2007年10月在大连理工大学化工学院应化专业取得博士学位,2012—2014到武汉理工大学材料复合新技术国家重点实验室进行博士后研究工作,2015—2016年在美国堪萨斯大学做访问学者。目前主要从事半导体光催化、室内空气净化等研究工作。先后公开发表研究论文40余篇,刊物包括: Chemical Enginee-ring Journal、Environmental Science & Technology、Journal of Colloid and Interface Science、Scientific Reports、Materials Letters、Catalysis & Science Technology、RSC Advances、Journal of Molecular Catalysis A: Chemistry、Catalysis Communications等。   
作者简介:  辛思甜,2019年6月毕业于武汉纺织大学,获得工学学士学位。现为湖北工业大学材料与化学工程专业硕士研究生,在聂龙辉教授的指导下进行研究。目前主要研究领域为室内空气净化。
引用本文:    
辛思甜, 聂龙辉. 室内空气中甲醛脱除技术及其应用进展[J]. 材料导报, 2023, 37(11): 21080277-13.
XIN Sitian, NIE Longhui. A Review of Indoor Formaldehyde Removal Techniques and Their Applications. Materials Reports, 2023, 37(11): 21080277-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080277  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21080277
1 Salthammer T, Mentese S, Marutzky R. Chemical Reviews, 2010, 110(4), 2536.
2 Tang X J, Bai Y, Duong A, et al. Environment International, 2009, 35(8), 1210.
3 Nie L H, Yu J G, Jaroniec M, et al. Catalysis Science & Technology, 2016, 6(11), 3649.
4 Meng C Y. Chemical Engineering & Equipment, 2010( 9), 160 (in Chinese).
孟彩云.化学工程与装备, 2010(9), 160.
5 Li J Z, Li W J, Zhou W R,et al. Journal of Beijing Forestry University, 2007, 29(4), 90 (in Chinese).
李建章, 李文军, 周文瑞, 等. 北京林业大学学报, 2007, 29(4), 90.
6 Wang W C, Zhou S X, Jiang Y Y,et al. Environmental Science & Technology, 2006, 29(6), 106 (in Chinese).
王文超, 周仕学, 姜瑶瑶, 等.环境科学与技术, 2006, 29(9), 106.
7 Burge P S, Harries M G, Lam W K, et al. Thorax, 1985, 40(4), 255.
8 Liu W. Investigation and study of formaldehyde as indoor air pollution in newly-decorated houses. Master's Thesis, Jilin University, China, 2004 (in Chinese).
刘伟. 新装修住宅室内空气污染物——甲醛的污染调查分析与防治对策. 硕士学位论文, 吉林大学, 2004.
9 WHO.WHO guidelines for indoor air quality: selected pollutants, WHO Regional Office of Europe, Copenhagen, 2010, pp. 121.
10 Cui W Y, Hui J X, Tan N D.Chemical Industry and Engineering Progress, 2018, 37(11), 4286 (in Chinese).
崔维怡, 惠继星, 谭乃迪. 化工进展, 2018, 37(11), 4286.
11 Marsh G M, Youk A O.Regulatory Toxicology and Pharmacology, 2005, 42(3), 275.
12 Luttrell W E. Chemical Health & Safety, 2003, 10(3), 29.
13 Miao L, Wang J L, Zhang P Y.Applied Surface Science, 2019,466, 441.
14 Zhu S L, Wang J, Nie L H.Chemistry Select, 2019, 4(41), 12085.
15 Ye J W, Yu Y, Fan J J, et al.Environmental Science: Nano, 2020, 7(12), 3655.
16 Lin L L, Qiu Z F, Han X L,et al. Environmental Pollution & Control, 2013, 35(12), 19 (in Chinese).
林莉莉, 邱兆富, 韩晓琳, 等.环境污染与防治, 2013, 35(12), 19.
17 Li H F, Xu H, Zhao Q,et al. Bulletin of the Chinese Ceramic Society, 2014, 33(1), 122 (in Chinese).
李慧芳, 徐海, 赵勤, 等.硅酸盐通报, 2014, 33(1), 122.
18 Dong C X, Sun S L, Yang Q X,et al. Journal of Jilin Institute of Chemical Technology, 2011, 28(3), 28 (in Chinese).
董春欣, 孙胜龙, 杨秋昕, 等.吉林化工学院学报, 2011, 28(3), 28.
19 Zhu M F, Liao C X, Chen A P, et al. Journal of East China University of Science and Technology, 2020, 47(5), 1 (in Chinese).
朱鸣凡, 廖春鑫, 陈爱平, 等.华东理工大学学报(自然科学版), 2020, 47(5), 1.
20 Jiang J C, Sun K.Chemistry and Industry of Forest Products, 2017, 37(1), 1 (in Chinese).
蒋剑春, 孙康. 林产化学与工业, 2017, 37(1), 1.
21 Niu Y H, Wang Z S, Wu H J, et al.Building Science, 2017, 33(12), 22 (in Chinese).
牛永红, 王忠胜, 吴会军, 等. 建筑科学, 2017, 33(12), 22.
22 Li C H. Study on adsorption of formaldehyde molecule on zeolites. Master's Thesis, Dalian University of Technology, China, 2005 (in Chinese).
李翠红. 分子筛吸附剂对甲醛分子吸附性能的研究. 硕士学位论文, 大连理工大学, 2005.
23 Li X, Wu S J, Song X, et al.Russian Journal of Physical Chemistry A, 2018, 92(12), 2535.
24 Ezugwu C I, Zhang S P, Li S P, et al.Environmental Science: Nano, 2019, 6(10), 2931.
25 Ryu D Y, Shimohara T, Nakabayashi K, et al.Journal of Industrial and Engineering Chemistry, 2019,80, 98.
26 Suresh S, Kante K, Fini E H, et al.Microporous and Mesoporous Mate-rials, 2019,286, 155.
27 Liu Y Y, Jia H W, Sun Z M, et al.Chemical Physics Letters, 2019,722, 32.
28 Wu P, Liu Z M.Cellulose Chemistry and Technology, 2017, 51(5-6), 521.
29 Yu J G, Li X Y, Xu Z H,et al. Environ Mental Science & Technology, 2013, 47(17), 9928.
30 Li S J, Huang H J, Wen S T,et al. Materials Reports, 2020, 34(Z1), 400 (in Chinese).
李世杰, 黄慧娟, 文世涛, 等.材料导报, 2020, 34(Z1), 400.
31 Zhu S L, Zheng J F, Xin S T, et al.Chemical Engineering Journal, 2022,427, 130951.
32 Nie L H, Yu J G, Li X Y, et al. Environmental Science & Technology, 2013, 47(6), 2777.
33 Huang H B, Leung D Y C.Journal of Catalysis, 2011, 280(1), 60.
34 Liu L L, Tian H, He J H, et al.Journal of Environmental Sciences, 2012, 24(6), 1117.
35 Zhang C B, He H, Tanaka K.Applied Catalysis B: Environmental, 2006, 65(1-2), 37.
21080277-1136 Zhang C B, Liu F D, Zhai Y P, et al.Angewandte Chemie-International Edition, 2012, 51(38), 9628.
37 Wang C Y, Li Y B, Zheng L R, et al.ACS Catalysis, 2021, 11(1), 456.
38 Chen M H, Yin H, Li X Y, et al.Journal of Hazardous Materials, 2020,395, 122628.
39 Ahmad W, Park E, Lee H, et al.Applied Surface Science, 2021,538, 147504.
40 Chen X Y, He G Z, Li Y B, et al.ACS Catalysis, 2020, 10(17), 9706.
41 Zhang C B, He H, Tanaka K I.Catalysis Communications, 2005, 6(3), 211.
42 Tang X F, Chen J L, Huang X M, et al.Applied Catalysis B: Environmental, 2008, 81(1-2), 115.
43 Wang Y Y, Jiang C J, Le Y, et al.Chemical Engineering Journal, 2019,365, 378.
44 Yang T F, Huo Y, Liu Y, et al.Applied Catalysis B: Environmental, 2017, 200, 543.
45 Nie L H, Zheng Y Q, Yu J G.Dalton Transactions, 2014, 43(34), 12935.
46 Nie L H, Meng A Y, Yu J G, et al.Scientific Reports, 2013,3, 3215.
47 Nie L H, Yu J G, Fu J W.ChemCatChem, 2014, 6(7), 1983.
48 Nie L H, Wang J, Yu J G.RSC Advances, 2017, 7(35), 21389.
49 He F G, Du B, Sharma G, et al.Polymers, 2019, 11(4), 674.
50 Luo G D, Yu Q, Yu L, et al.Fibers and Polymers, 2019, 20(10), 2099.
51 Ye J W, Zhou M H, Le Y, et al.Applied Catalysis B: Environmental, 2020,267, 118689.
52 Chen D Y, Zhang G P, Wang M M, et al.Angewandte Chemie International Edition, 2021, 60(12), 6377.
53 Li Q, Yan Z X, Wang N H, et al.Catalysis Science & Technology, 2020, 10(12), 4030.
54 Chen B B, Zhu X B, Crocker M, et al.Catalysis Communications, 2013, 42, 93.
55 Chen B B, Shi C, Crocker M, et al.Applied Catalysis B: Environmental, 2013,132, 245.
56 Qu J F, Chen D Y, Li N J, et al.Small, 2019, 15(2), 1804415.
57 Xu J, Qu Z P, Ke G Z, et al.Applied Surface Science, 2020,513, 145910.
58 Huang H B, Leung D Y C.ACS Catalysis, 2011, 1(4), 348.
59 Park S J, Bae I, Nam I S, et al.Chemical Engineering Journal, 2012,195, 392.
60 Tan H Y, Wang J, Yu S Z, et al.Environmental Science & Technology, 2015, 49(14), 8675.
61 Xiang N, Han X J, Bai Y R, et al. Molecular Catalysis, 2020,494, 111112.
62 Wang C Y, Li Y B, Zhang C B, et al. Applied Catalysis B: Environmental, 2021, 282, 119540.
63 He M, Cao Y Q, Ji J, et al. Journal of Catalysis, 2021,396, 122.
64 Sun X C, Lin J, Wang Y H, et al. Applied Catalysis B: Environmental, 2020,268, 118741.
65 Chen D, Qu Z P, Sun Y H, et al. Applied Catalysis B: Environmental, 2013,142, 838.
66 Bai B Y, Li J H. ACS Catalysis, 2014, 4(8), 2753.
67 Huang Z W, Gu X, Cao Q Q, et al. Angewandte Chemie International Edition, 2012, 51(17), 4198.
68 Wang J L, Zhang P Y, Li J G, et al. Environmental Science & Technology, 2015, 49(20), 12372.
69 Wang J L, Zhang G K, Zhang P Y. Journal of Materials Chemistry A, 2017, 5(12), 5719.
70 Wang J L, Li J G, Jiang C J, et al. Applied Catalysis B: Environmental, 2017, 204, 147.
71 Zhang J H, Li Y B, Wang L, et al. Catalysis Science & Technology, 2015, 5(4), 2305.
72 Chen B B, Wu B, Yu L M, et al. ACS Catalysis, 2020, 10(11), 6176.
73 He T H, Zhou Y, Ding D N, et al. ACS Applied Materials & Interfaces, 2021, 13(25), 29664.
74 Wang Y, Liu K S, Wu J, et al. ACS Catalysis, 2020, 10(17), 10021.
75 Wang C, Chen T H, Liu H B, et al. Applied Clay Science, 2019,182, 105289.
76 Sekine Y. Atmospheric Environment, 2002, 36(35), 5543.
77 Chen T, Dou H Y, Li X L, et al. Microporous and Mesoporous Materials, 2009, 122(1-3), 270.
78 Tang X F, Li Y G, Huang X M, et al. Applied Catalysis B: Environmental, 2006, 62(3-4), 265.
79 Tian H, He J H, Zhang X D, et al. Microporous and Mesoporous Mate-rials, 2011, 138(1-3), 118.
80 Wen Y R, Tang X, Li J H, et al. Catalysis Communications, 2009, 10(8), 1157.
81 Tang X F, Li J H, Hao J M, et al. Catalysis Communications, 2010, 11(10), 871.
82 Hu M, Yin L H, Zhou H X, et al. Journal of Membrane Science, 2020, 605, 118094.
83 Zheng J Y, Zhao W K, Wang X X, et al. Chemical Engineering Journal, 2020,401, 125790.
84 Zou N, Nie Q, Zhang X R, et al. Chemical Engineering Journal, 2019,357, 1.
85 Su J F, Cheng C L, Guo Y P, et al. Journal of Hazardous Materials, 2019,380, 120890.
86 Dong Y X, Liu K, Su C G, et al. Applied Chemical Industry, 2021, 50(2), 516 (in Chinese).
董雅鑫, 刘凯, 苏晨光, 等.应用化工, 2021, 50(2), 516.
87 Bai B Y, Arandiyan H, Li J H.Applied Catalysis B: Environmental, 2013,142-143, 677.
88 Fan Z Y, Zhang Z X, Fang W J, et al. Chinese Journal of Catalysis, 2016, 37(6), 947.
89 Xu J, White T, Li P, et al. Journal of the American Chemical Society, 2010, 132(38), 13172.
90 Wang Z, Wang W Z, Zhang L, et al. Catalysis Science & Technology, 2016, 6(11), 3845.
91 Li R, Huang Y, Zhu D D, et al. Environmental Science & Technology, 2021, 55(6), 4054.
92 Zhu D D, Huang Y, Cao J J, et al. Applied Catalysis B: Environmental, 2019,258, 117981.
93 Zhang S P, Zhuo Y F, Ezugwu C I, et al. Environmental Science & Technology, 2021, 55(12), 8341.
94 Zhu S L, Nie L H. Journal of Industrial and Engineering Chemistry, 2021,93, 28.
95 Huang S Y, Zhu X F, Cheng B, et al.Environmental Science: Nano, 2017,4, 2215.
96 Ye J W, Cheng B, Wageh S, et al.RSC Advances, 2016,6, 34280.
97 Ikegami M, Matsumoto T, Kobayashi Y, et al.Applied Catalysis B: Environmental 2013,134-135, 130.
98 Qi L F, Le Y, Wang C, et al. New Journal Chemistry, 2021,45, 3960.
99 Liu J R, Zheng Y M, Zhu Q Y, et al.Catalysis Surveys from Asia, 2020, 24(3), 207.
100 Wang C, Liu H B, Chen T H, et al. Applied Clay Science, 2018,159, 50.
101 Dong Y X, Su C G, Liu K, et al.Catalysts, 2021,11, 555.
102 Hu M Y, Zhou X, Li Y,et al. Materials Reports, 2021, 35(10), 10036 (in Chinese).
胡明玉, 周侠, 李晔, 等. 材料导报, 2021, 35(10), 10036.
103 Chen M, Wang H H, Chen X Y, et al. Chemical Engineering Journal, 2020, 390, 124481.
104 Zhang R Y, Li C J, Zhang A L, et al. Materials Reports, 2020, 34(2), 3001 (in Chinese).
张瑞阳, 李成金, 张艾丽, 等.材料导报, 2020, 34(2), 3001.
105 Gong Y, Wang L L, Xu Y Q,et al. Materials Reports, 2020, 34(Z2), 1037 (in Chinese).
巩云, 王龙龙, 徐亚琪, 等.材料导报, 2020, 34(Z2), 1037.
106 Low W, Boonamnuayvitaya V. Journal of Environmental Management, 2013,127, 142.
107 Diao W Y, He J, Wang Q, et al. Catalysis Science & Technology, 2021, 11(1), 230.
108 Li Y H, Zhang M, Gu M L, et al. Chinese Science Bulletin, 2020, 65(8), 718 (in Chinese).
李宇涵, 张敏, 谷苗莉, 等.科学通报, 2020, 65(8), 718.
109 Hu X L, Li C Q, Sun Z M, et al. Building and Environment, 2020,168, 106481.
110 Jiang K, Zhang J, Wan Y F, et al. Optical Materials, 2021,114, 110913.
111 Yan S H, Yu J W, Zhu B, et al. ECS Journal of Solid State Science and Technology, 2021, 10(1), 11002.
112 Liu J J, Xiong C B, Jiang S J, et al. Applied Catalysis B: Environmental, 2019,249, 282.
113 Hu C, Tsai W F, Wei W H, et al. Carbon, 2021,175, 467.
114 Liu M Y, Zheng L, Lin G L, et al. Advanced Powder Technology, 2020, 31(1), 339.
115 Huang G M, Li S Z, Liu L J, et al. Applied Surface Science, 2020,503, 144183.
21080277-12116 Hua C L, Liu X Y, Ren S X, et al. Ecotoxicology and Environmental Safety, 2020,202, 110897.
117 Shen W H, Long Z, Chen X Q, et al. Journal of South China University of Technology (Natural Science Edition), 2010, 38(8), 142 (in Chinese).
沈文浩, 龙周, 陈小泉, 等.华南理工大学学报(自然科学版), 2010, 38(8), 142.
118 Qi H, Sun D Z, Chi G Q. Journal of Harbin Institute of Technology, 2006, 38(7), 1051 (in Chinese).
齐虹, 孙德智, 迟国庆.哈尔滨工业大学学报, 2006, 38(7), 1051.
119 Cui X, Shi J W, Chen S H. Chemical Industry and Engineering Progress, 2013, 32(10), 2377 (in Chinese).
崔星, 石建稳, 陈少华. 化工进展, 2013, 32(10), 2377.
120 Yang X P, Dai L Y, Zeng M Q, et al. Materials Reports, 2010, 24(15), 320 (in Chinese).
杨小平, 戴乐阳, 曾美琴, 等.材料导报, 2010, 24(15), 320.
121 Wu Z C, Zhang X J, Hu Y Z. Gas discharge, National Defense Industry Press, China, 2012, pp. 132 (in Chinese).
武占成, 张希军, 胡有志.气体放电, 国防工业出版社, 2012, pp. 132.
122 Huang T. Research on the theory method and manufacture technology for electronics corona purifying automobile exhaust. Master's Thesis, Wuhan University of Technology, China, 2008 (in Chinese).
黄涛. 电晕净化汽车尾气理论方法与制备技术的研究. 硕士学位论文, 武汉理工大学, 2008.
123 Xu G H, Jiang E Y, Sheng J.Plasma technology and application, Che-mical Industry Press, China, 2006, pp. 14 (in Chinese).
许根慧, 姜恩永, 盛京.等离子体技术与应用, 化学工业出版社, 2006, pp. 14.
124 Zhang C Y. Optimization of cylinder corona discharge reactor's structure and power supply types. Master's Thesis, Dalian University of Technology, China, 2013 (in Chinese).
张春阳. 筒式电晕放电反应器结构优化及供电方式研究. 硕士学位论文, 大连理工大学, 2013.
125 Yan N Q. Treatment of organic waste gas by corona-catalytic method. Ph.D. Thesis, Zhejiang University, China, 1999 (in Chinese).
晏乃强. 电晕-催化法治理有机废气的技术研究. 博士学位论文, 浙江大学, 1999.
126 Wang X J, Sun C X. Journal of Chongqing University, 2010, 33(11), 46 (in Chinese).
王晓静, 孙才新.重庆大学学报, 2010, 33(11), 46.
127 Zhang Q. Dielectric barrier discharge plasma treatment of formaldehyde gas and its mechanism. Master's Thesis, Xi'an Polytechnic University, China, 2019 (in Chinese).
张晴. 介质阻挡放电等离子体降解甲醛气体及其机理分析. 硕士学位论文, 西安工程大学, 2019.
128 Li J, Li J, Liang W J, et al. High Voltage Engineering, 2007, 33(2), 171 (in Chinese).
李坚, 李洁, 梁文俊, 等. 高电压技术, 2007, 33(2), 171.
129 Zhao P T. Research and application of plasma in indoor air cleaning. Master's Thesis, Beijing Jiaotong University, China, 2015 (in Chinese).
赵朋涛. 等离子体在室内空气净化中的研究与应用. 硕士学位论文, 北京交通大学, 2015.
130 Wang X X. High Voltage Engineering, 2009, 35(1), 1 (in Chinese).
王新新.高电压技术, 2009, 35(1), 1.
131 Wan Y J, Fan X, Zhu T L. Chemical Engineering Journal, 2011, 171(1), 314.
132 Zhu X B, Gao X, Qin R, et al. Applied Catalysis B: Environmental, 2015,170, 293.
133 Ding H X, Zhu A M, Lu F G, et al. Journal of Physics D: Applied Phy-sics, 2006, 39(16), 3603.
134 Liang W J, Li J, Li J X, et al. Journal of Hazardous Materials, 2010, 175(1-3), 1090.
135 Zhao D Z, Li X S, Shi C, et al. Chemical Engineering Science, 2011, 66(17), 3922.
136 Kim H H, Ogata A, Futamura S, et al. Applied Catalysis B: Environmental, 2008, 79(4), 356.
137 He X J, Zeng Y X, Chen J L, et al. Journal of Physics D: Applied Phy-sics, 2008, 52(46), 465203.
138 Asilevi P J, Yi C W, Li J, et al. International Journal of Environmental Science and Technology, 2020, 17(2), 765.
139 Shi H C, Wang W C, Yang D Z, et al. Acta Physico-Chimica Sinica, 2011, 27(8), 1979 (in Chinese).
史恒超, 王文春, 杨德正, 等. 物理化学学报, 2011, 27(8), 1979.
140 Zhu T, Li J, Jin Y Q, et al. High Voltage Engineering, 2009, 45(4), 16 (in Chinese).
竹涛, 李坚, 金毓峑, 等. 高电压技术, 2009, 45(4), 16.
[1] 曹哲勇, 刘兴华, 郑静霞, 杨永珍, 刘旭光. 非线性光学碳点的调控及应用研究进展[J]. 材料导报, 2023, 37(7): 21060197-10.
[2] 孙宗旭, 张焕芝, 荆锐, 吴博竞, 徐芬, 夏永鹏, 孙立贤. 相变复合纳米纤维的研究与应用[J]. 材料导报, 2023, 37(7): 21060061-8.
[3] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[4] 张弛, 党乾, 刘国怀, 王昭东. 稀土钇的开发及应用[J]. 材料导报, 2023, 37(3): 22120049-8.
[5] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[6] 金海泽, 孔文慧, 贾赫男, 冯晨晨, 李翠霞, 贾德昌. 直写成型无机非金属材料及其结构/功能应用进展[J]. 材料导报, 2023, 37(11): 21120033-10.
[7] 肖建庄, 叶涛华, 隋同波, 潘智生. 废弃混凝土再生微粉的基本问题及应用[J]. 材料导报, 2023, 37(10): 22120116-10.
[8] 李世杰, 王智辉, 代琳心, 李振瑞, 王佳军, 马建锋, 刘杏娥. 银/尿素改性竹质活性炭的制备及甲醛净化与抗菌性能[J]. 材料导报, 2022, 36(Z1): 22030103-6.
[9] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[10] 刘宇, 李彬, 丁二卯, 雷小丽, 宁平. 新型氧化剂材料脱硫脱硝的研究进展[J]. 材料导报, 2022, 36(9): 20070192-8.
[11] 戎鑫, 李建军, 但宏兵, 薛长国, 高明, 李梦, 刘银. 磁化水的特性、机理及应用研究进展[J]. 材料导报, 2022, 36(9): 21020032-7.
[12] 谢鸿翔, 项厚政, 马瑞奇, 陈雨雪, 刘国忠, 姚思远, 冒爱琴. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 20070201-8.
[13] 宋灵婷, 肖文波, 黄乐, 吴华明. 三维、二维卤化物钙钛矿材料性能及应用综述[J]. 材料导报, 2022, 36(5): 20070246-7.
[14] 高鸿, 邢焰, 孙明, 余斌, 李岩, 刘泊天, 吴冰, 于利夫, 樊彦艳. 航天器用材料应用验证技术体系[J]. 材料导报, 2022, 36(22): 22050332-5.
[15] 平托, 张益帆, 宣吴静, 张育新. 空间高吸收率消杂光涂层材料的研究与应用进展[J]. 材料导报, 2022, 36(22): 22040298-12.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed