Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21070049-9    https://doi.org/10.11896/cldb.21070049
  无机非金属及其复合材料 |
铌酸钾钠压电陶瓷制备工艺研究进展
李雪伍1, 周龙龙1,2, 黄艳斐2, 郭伟玲2, 邢志国2, 王海斗3, 呼帅邦1
1 西安科技大学机械工程学院,西安 710000
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
Review of Preparation Methods for Potassium Sodium Niobate Lead-free Piezoelectric Ceramics
LI Xuewu1, ZHOU Longlong1,2, HUANG Yanfei2, GUO Weiling2, XING Zhiguo2, WANG Haidou3, HU Shuaibang1
1 School of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an 710000, China
2 National Key Laboratory for Remanufacturing, Army Armored Forces Institute, Beijing 100072, China
3 National Engineering Research Center for Remanufacturing, Army Armored Forces Institute, Beijing 100072, China
下载:  全 文 ( PDF ) ( 7988KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 压电陶瓷是一种具有力电转换效应的功能陶瓷,已被广泛应用于医疗、传感器、超声马达等领域。由于无铅压电陶瓷在制备过程中避免了铅挥发,属于环境友好型材料,成为目前国内外研究的重点。铌酸钾钠陶瓷是无铅压电陶瓷中电学性能较好的陶瓷之一,其电学性能在很大程度上受制备技术及其工艺的影响。固相烧结技术是目前铌酸钾钠陶瓷制备最成熟的技术。
铌酸钾钠陶瓷制备过程主要包括粉体合成、压制成型和烧结成瓷三步。通过粉体合成工艺可制备出高织构化铌酸钾钠陶瓷的粉体模板,但存在不同程度的软团聚和硬团聚现象;压制成型可以制备出简单的陶瓷坯件,但受模具和辅助工具影响较大,精度低、结构简单、需二次加工、不适合批量生产。针对烧结过程中由高温导致的元素挥发不能被很好地抑制的问题,深入研究低温烧结、抑制钠钾元素挥发对铌酸钾钠陶瓷的优异制备有着深远意义。
本文综述了近年来铌酸钾钠陶瓷固相烧结制备工艺的研究进展,对粉体合成、压制成型、烧结成瓷三步进行了系统的论述。通过分析粉体合成、压制成型和烧结制备工艺的优点与不足,重点讨论其对铌酸钾钠陶瓷微观组织和电学性能的影响机制,以期为制备高电学性能铌酸钾钠陶瓷提供参考,并为其在医学与工业领域的应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雪伍
周龙龙
黄艳斐
郭伟玲
邢志国
王海斗
呼帅邦
关键词:  铌酸钾钠  粉体合成  压制成型  烧结    
Abstract: Piezoelectric ceramics are a class of functional ceramics that can facilitate the conversion between force and electricity. Piezoelectric ceramics are widely used in biomedical applications, sensors, ultrasonic motors and a variety of other fields. As they are lead-free, the volatilization of lead during the preparation process can be avoided, making them environment-friendly. This aspect made piezoelectric ceramics the research focus at home and abroad. Potassium sodium niobate ceramic is a typical lead-free piezoelectric ceramic with highly favorable electrical properties. However, the electrical properties are affected by the preparation technology and process. Solid-state sintering is the most mature technology for the preparation of potassium sodium niobate ceramics. The preparation of potassium sodium niobate ceramic includes threemain steps, namely, powder synthesis, compression molding, and sintering forming. The results indicate that a powder template with highly textured potassium sodium niobate ceramic can be prepared by the powder synthesis process, however, these components are not homogenous and are comprised of different degrees of soft and hard agglomerations. A simple ceramic blank can be prepared by pressing, but the quality is affected by the mold and auxiliary tool characteristics, low precision, simple structure, and secondary processing. The method is not suitable for mass production. In addition, the element volatilization caused by the high temperature in the sintering process cannot be avoided. Hence, in-depth studies on the low-temperature sintering and reduction of volatilization of sodium and potassium are highly relevant for the effective excellent preparation of potassium sodium niobate ceramics. In this paper, the state of the art of solid-state sintering technology for preparing potassium sodium niobate ceramics is presented. The three fabrication steps, namely, powder synthesis, compression molding, and sintering forming are also systematically discussed. By analyzing the advantages and disadvantages of this process, the influence mechanism of powder synthesis characteristics on the microstructural and electrical properties of potassium sodium niobate ceramics has also been discussed. This paper offers guidance for the preparation of potassium sodium niobate ceramics with highly favorable electrical properties, and also for their application in medicine and industry.
Key words:  sodium potassium niobate    powder synthesis    pressing molding    sintering
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TB381  
基金资助: 国家自然科学基金面上项目(51775554;52005511)
通讯作者:  郭伟玲,通信作者,中国人民解放军陆军装甲兵学院装备保障与再制造系装备再制造技术国防科技重点实验室副研究员。2004年6月获山西师范大学学士学位,2007年7月获山东师范大学硕士学位,2010年7月在北京师范大学物理化学专业取得博士学位。近年来,主要从事表面工程领域的科研工作,主持项目3项,参与项目10余项,发表学术论文20余篇,获授权国家发明专利2项,受理5项,参编专著1部。   
作者简介:  李雪伍,清华大学摩擦学国家重点实验室博士后,教授,博士研究生导师,西安科技大学功能材料特种加工研究所所长。2012年6月获武汉科技大学工学学士学位,2014年至2016年在中国科学院合肥物质科学研究院进行博士联培,2017年10月获武汉理工大学工学博士学位,主要从事机械表界面行为与调控、表面工程与摩擦学、金属腐蚀与防护研究工作。现以第一及通信作者身份发表SCI期刊检索论文20余篇,其中ESI高被引及封面论文各1篇,申请国家发明专利10余项。
引用本文:    
李雪伍, 周龙龙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 呼帅邦. 铌酸钾钠压电陶瓷制备工艺研究进展[J]. 材料导报, 2023, 37(11): 21070049-9.
LI Xuewu, ZHOU Longlong, HUANG Yanfei, GUO Weiling, XING Zhiguo, WANG Haidou, HU Shuaibang. Review of Preparation Methods for Potassium Sodium Niobate Lead-free Piezoelectric Ceramics. Materials Reports, 2023, 37(11): 21070049-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070049  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21070049
1 Zhao Q, Zhao J, Tan X. Materials Physics and Chemistry, 2019,1, 1.
2 Yakushev P N, Shalimov V V. Technical Physics Letters, 2020, 46(2), 182.
3 Liao Y, Wang D, Wang H, et al. Dalton Transactions, 2020, 49(4), 1311.
4 Ma Z, Li G, Sun B, et al. Journal of Materials Science, 2020, 55(6), 1.
5 Chen S T, Chee K I T, Kui Y, et al. Journal of the American Ceramic Society, 2016, 99(10), 3293.
6 Amit M, Rui P, Morgane D, et al. Langmuir, 2016,32, 5241.
7 Zhang Y, Li M, Yang S, et al. Solid State Communications, 2021,324, 114133.
8 Shi W M, Du J, Chen C, et al. Journal of Materials Science: Materials in Electronics, 2020, 31(2), 959.
9 Li H T, Yan Y F, Wang G X, et al. Acta Intraocular Lens, 2016, 45(6), 1619 (in Chinese).
李海涛, 闫焉服, 王广欣, 等.人工晶体学报, 2016, 45(6),1619.
10 Zhu H B, Yang X Y, Zhang D Q, et al. Journal of Qiqihar University (Natural Science Edition), 2012, 28(2), 41 (in Chinese).
朱厚彬, 杨秀英, 张德庆, 等.齐齐哈尔大学学报(自然科学版), 2012, 28(2), 41.
11 Xu J, Yang F M, Luo M, et al. Colloids and Polymers, 2017, 35(4), 164 (in Chinese).
徐健, 杨发明, 罗镅, 等.胶体与聚合物, 2017, 35(4), 164.
12 Li L Y,Bai W F,Zhang Y, et al. Journal of Alloys and Compounds, 2015,622, 137.
13 Venet M, Santa R W, Jean C M, et al. Journal of the European Ceramic Society, 2019,39, 3456.
14 Tao H, Yin J, Zhao C, et al. Journal of the European Ceramic Society, 2020, 41(1), 335.
15 Geng Z M. Preparation of KNN based transparent ceramics by hot pressing sintering.Master's Thesis, Changzhou University, China, 2015 (in Chinese).
耿志明.热压烧结制备KNN基透明陶瓷. 硕士学位论文, 常州大学, 2015.
16 Li J F, Wang K, Zhang B P, et al. Journal of the American Ceramic So-ciety, 2006, 89(2), 706.
17 Feizpour M, Bafrooei H B, Hayati R, et al. Ceramics International, 2014, 40(1), 871.
18 Garcia M A P, Gupta S K, Mao Y. Ceramics International, 2020, 46(2), 1352.
19 Ge H Y, Hou Y D, Yang J F, et al. Powder Technology, 2013,246, 144.
20 Liu L L, Guo Z Z. Ferroelectrics, 2018, 524(1), 189.
21 Guo Z Z, Liu L L, Yu J, et al. Piezoelectric and Acoustooptic, 2019, 41(8), 209 (in Chinese).
郭壮壮, 刘亮亮, 郁军, 等.压电与声光, 2019, 41(8), 209.
22 Li L Y, Bai W F, Zhang Y, et al. Journal of Alloys & Compounds, 2015,622, 137.
23 Li L Y, Bai W F, Zhang Y, et al. Ferroelectrics, 2016, 490(1), 85.
24 Li Y X, Li P, Wu Y Z, et al. Ceramics International, 2021, 47(2), 2180.
25 Wang H Q, Zuo R Z, Fu J, et al. Journal of Alloys and Compounds, 2011,509, 936.
26 Khorrami G H, Kompany A, Zak A K. Materials Letters, 2013, 110(1), 172.
27 Lu T. Preparation of potassium sodium niobate piezoelectric ceramic thin films by sol-gel method.Master's Thesis,Nanjing University of Aeronautics and Astronautics, China, 2014(in Chinese).
陆婷. 溶胶凝胶法制备铌酸钾钠压电陶瓷薄膜的研究. 硕士学位论文, 南京航空航天大学, 2014.
28 Hu C X, Cheng H L, Ruan X Y, et al. Journal of Baoji College of Arts and Sciences (Natural Science Edition), 2020, 40(1), 29 (in Chinese).
胡晨曦, 程花蕾, 阮晓煜, 等. 宝鸡文理学院学报(自然科学版), 2020, 40(1), 29.
29 Surmenev R A, Chernozem R V, Skirtach A G, et al. Ceramics International, 2021, 47(7), 8904.
30 Bai S, Karaki T. Journal of the American Ceramic Society, 2013, 96(8), 2515.
31 zeren Y, Ebru M A, Sedat A. Advanced Powder Technology, 2014,25, 1825.
32 Cao H Q, Lu B, You C, et al. Rare Metal Materials and Engineering, 2016, 45(S1), 337 (in Chinese).
曹慧群, 卢兵, 游诚, 等.稀有金属材料与工程, 2016, 45(S1), 337.
33 Lu Y, Karakin T, Fujii T. Ceramics International, 2015,41, 174.
34 Lou Y X, Yang Z, Jia X M, et al. Journal of Qilu University of Technology, 2019, 33(1), 8 (in Chinese).
娄有信, 杨子, 贾小敏, 等. 齐鲁工业大学学报, 2019, 33(1), 8.
35 Kumara P, Pattanaika M. Ceramics International, 2013, 39(1), 65.
36 Adamczyk-Habrajska M, Szafraniak-Wiza I, Goryczka T, et al. Materials Chemistry and Physics, 2020(242), 122451.
37 Zhu K J, Meng Z L, Qiu J H, et al. Optical Precision Engineering, 2009, 17(1), 132(in Chinese).
朱孔军, 孟兆磊, 裘进浩, 等.光学精密工程, 2009, 17(1), 132.
38 Yin Q Y, Wang C Z, Wang Y, et al. Journal of Materials Science Mate-rials in Electronics, 2018, 29(11), 9268.
39 Tong Y, Liu Y, Tian D. Journal of Anqing Normal University (Natural Science Edition), 2020, 26(4), 56 (in Chinese).
童悦, 刘永, 田冬. 安庆师范大学学报(自然科学版), 2020, 26(4), 56.
40 Zhang R Z, Guo W P, Zhao G L. Journal of Henan University of Science and Technology (Natural Science Edition), 2016, 37(6), 5 (in Chinese).
张瑞珠, 郭雯鹏, 赵高磊. 河南科技大学学报(自然科学版), 2016, 37(6), 5.
41 Choi J H, Kim J S, Han S H, et al. Ceramics International, 2014,40, 13269.
42 Li Y M, Liu Y J, Xie J, et al. Silicate Bulletin, 2015, 34(2), 303 (in Chinese).
李月明, 刘奕君, 谢俊, 等. 硅酸盐通报, 2015, 34(2), 303.
43 Liu Y J, Li Y M, Shen Z Y, et al. Acta Intraocular Lens, 2015, 44(8), 2199 (in Chinese).
刘奕君, 李月明, 沈宗洋, 等.人工晶体学报, 2015, 44(8), 2199.
44 Wang W C, Yuan X Y, Ma C Y, et al. Ceramics International, 2015, 41, 8377.
45 Chen W C, Wang F F, Yan K, et al. Ceramics International, 2019,45, 4880.
46 Chen W. Fabrication and properties of potassium sodium niobate piezoelectric scaffolds by three dimensional printing technology.Master's Thesis, South China University of Technology, China, 2017 (in Chinese).
陈威.三维打印技术制备铌酸钾钠压电支架及其性能研究. 硕士学位论文, 华南理工大学, 2017.
47 Fisher J G, Andreja B, Kosec M, et al. Journal of the American Ceramic Society, 2008, 91(5), 1503.
48 Li K, Li F L, Wang Y, et al. Materials Chemistry and Physics, 2011, 131(1-2), 320.
49 Su Y L, Chen X M, Yu Z D, et al. Journal of Materials Science, 2017, 52(5), 2934.
50 Yu Z D, Chen X M, Su Y L, et al. Journal of Materials Science, 2019, 54(21), 13457.
51 Zhen Y H, Li J F, Wang K, et al. Materials Ence & Engineering B, 2011, 176(14), 1110.
52 Bah M, Giovannelli F, Schoenstein F, et al. Ceramics International, 2014, 40(5), 7473.
53 Kuscer D, Kocjan A, Majcen M, et al. Ceramics International, 2019, 45(8), 10429.
54 Li Z X, Sun H J, Liu X F, et al. Ceramics International, 2020, 46(8), 11617.
55 Feizpour M, Bafrooei H B, Hayati R, et al. Ceramics International, 2014, 40(1), 871.
56 Li H T, Li R, Wang G X, et al. Acta Silicate Sinica, 2020, 48(9), 1396 (in Chinese).
李海涛, 李冉, 王广欣, 等. 硅酸盐学报, 2020, 48(9), 1396.
57 Bafandeha M R, Gharahkhani R, Lee J S. Materials Chemistry and Phy-sics, 2015,156, 254.
58 Jeong D Y, Lee S H, Song H C, et al. Journal-Korean Physical Society, 2011, 58(3), 663.
59 Wang W R, Cheng H L, Zhou W C. Piezoelectric and Acoustooptic, 2017, 39(2), 252 (in Chinese).
王文蕊, 程花蕾, 周万城. 压电与声光, 2017, 39(2), 252.
60 Zhang C, Ren X Y, Zhou H W, et al. Journal of Yili Normal University (Natural Science Edition), 2016, 10(3), 33 (in Chinese).
张超, 任翔云, 周恒为, 等.伊犁师范学院学报(自然科学版), 2016, 10(3), 33.
61 John G F, Dibyaranjan R, Seok M K, et al. Journal of Alloys and Compounds, 2009, 479(1-2), 467.
[1] 李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
[2] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[3] 周维, 樊坤阳, 黄淙, 刘子京, 万维财, 贡太敏. 烧结温度对团聚高温快速烧结WC-10Co-4Cr粉末及其HVOF涂层性能的影响[J]. 材料导报, 2022, 36(6): 20120041-6.
[4] 宋牙牙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 吕振林, 张执南. 铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J]. 材料导报, 2022, 36(5): 21030094-10.
[5] 付鹏程, 肖国庆, 丁冬海, 方宇飞, 种小川, 朱现峰. 高压电瓷废料制备低密度高强度陶粒支撑剂及其性能[J]. 材料导报, 2022, 36(4): 21010085-5.
[6] 李凌锋, 赵世贤, 郭昂, 司瑶晨, 王战民, 王刚. 利用传统电炉低温烧结致密Si3N4陶瓷[J]. 材料导报, 2022, 36(4): 20090160-6.
[7] 刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
[8] 刘琛, 李勇, 周文, 吴宜勇, 王岩, 吴跃民, 王芳, 琚丹丹, 闫继宏. 模拟月/火星壤的原位成型技术研究进展[J]. 材料导报, 2022, 36(22): 22050122-7.
[9] 孙赫男, 关岩, 毕万利, 孙美硕. 烧结氧化镁粉的晶体特征对磷酸镁水泥力学性能的影响[J]. 材料导报, 2022, 36(19): 20120126-6.
[10] 郭岩岩, 历长云, 冀国良, 许磊, 王亚松, 米国发. 粉末致密化过程数值模拟研究现状[J]. 材料导报, 2022, 36(18): 20080161-7.
[11] 宋欢欢, 赵鸣, 崔文正, 刘卓承, 陈华, 杜永胜. SnO2对低温烧结ZnBiMnNbO基高压压敏陶瓷的影响[J]. 材料导报, 2022, 36(17): 21030033-5.
[12] 刘全, 孙红娟, 彭同江, 王璨. 烧结温度对石棉矿山废石制备微晶玻璃析晶性能的影响[J]. 材料导报, 2022, 36(15): 21040122-5.
[13] 安宁, 吴浩恺, 朱敏, 郑月红, 占发奇, 喇培清. 盐助燃烧合成法大规模制备超细LaB6粉体及其烧结性能[J]. 材料导报, 2022, 36(11): 21010240-7.
[14] 叶东东, 徐子芳, 赵怡梵, 俞欣欣, 傅宇豪. 电解锰渣陶粒共烧结温度影响机理研究[J]. 材料导报, 2022, 36(11): 21120242-6.
[15] 张雪, 王进, 罗萍, 刘蝶, 詹磊, 魏玉锋, 王军霞. NZP型磷酸盐陶瓷固化模拟放射性核素Sr2+/Sm3+的研究[J]. 材料导报, 2022, 36(1): 20090353-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed