Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2063-2066    https://doi.org/10.11896/cldb.18090130
  金属与金属基复合材料 |
Mo掺杂Co-B非晶态合金的制备及催化硼氢化钠水解制氢性能
邵阳阳, 靳惠明, 俞亮, 高吉成, 陈悦蓉
扬州大学机械工程学院,扬州 225000
Preparation of Mo-doped Co-B Amorphous Alloy and Its Catalytic Performance on Sodium Borohydride Hydrolysis for Hydrogen Production
SHAO Yangyang, JIN Huiming, YU Liang, GAO Jicheng, CHEN Yuerong
School of Mechanical Engineering,Yangzhou University,Yangzhou 225000,China
下载:  全 文 ( PDF ) ( 4694KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 硼氢化钠作为金属氢化物,因具有储氢密度大、产氢纯度高、反应温度低、储存运输安全、能源循环利用率高等特点,成为目前产氢技术研究领域的热点之一。硼氢化钠水解产氢技术的关键在于催化剂。本研究采用化学还原法制备了掺杂助催剂Mo的三元非晶态Mo-Co-B纳米合金粉末,并将其用于催化硼氢化钠水解制氢。采用X射线衍射(XRD)仪、场发射透射电镜(FETEM)、扫描电镜(SEM)、能谱分析(EDS)对样品的结构、表面形貌、元素成分进行了表征。通过排水法进行NaBH4溶液水解产氢反应,研究了催化剂的催化性能。结果表明,Mo的适量掺入能显著减小催化剂的粒径,增大其比表面积,提高Co-B催化剂的催化性能,但过量的Mo会导致粉末中的金属氧化物增多,不利于催化。当Mo/Co物质的量比为0.05时,催化剂表现出最佳的催化活性。此外,研究了催化剂用量、反应温度、NaBH4浓度等因素对NaBH4溶液水解产氢反应的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵阳阳
靳惠明
俞亮
高吉成
陈悦蓉
关键词:  硼氢化钠  水解产氢  非晶态催化剂  Mo-Co-B    
Abstract: As a metal hydride, sodium borohydride has become one of the hot spots in the field of hydrogen production due to its large hydrogen storage density, high hydrogen production purity, low reaction temperature, safe storage and transportation, and excellent energy cycle utilization. The key technology of hydrolysis of sodium borohydride to produce hydrogen lies in catalyst. In this study, a series of Mo-doped ternary Mo-Co-B amorphous alloy powders, catalysts for sodium borohydride hydrolysis for hydrogen production, were prepared by chemical reduction. The structure and properties of the Mo-Co-B alloy samples were characterized by X-ray diffractometer (XRD), field emission transmission electron microscope (FETEM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Furthermore, the catalytic activity of the samples was investigated by NaBH4 hydrolysis reaction. As could be seen from the results, appropriate doping of Mo in Co-B contributed to reducing the particle size, enlarging the specific surface area and improving the catalytic activity of Co-B amorphous alloy. Whereas, excess Mo did harm to the catalytic reaction due to the increase of metal oxide in catalyst powder. The Mo-Co-B amorphous alloy exhibited optimum catalytic performance when n(Mo)/n(Co) was 0.05. Besides, the effects of reaction temperature, catalyst amount and NaBH4 concentration on hydrogen generation rate were discussed as well.
Key words:  sodium borohydride    hydrolysis for hydrogen production    amorphous catalyst    Mo-Co-B
出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  O463  
基金资助: 江苏省高等学校自然科学研究项目(16KJB460024;18KJB460031)
通讯作者:  doctorJhm@163.com   
作者简介:  邵阳阳,2019年6月毕业于扬州大学,获得工程硕士学位。研究课题主要围绕非晶态催化剂,开展关于硼氢化钠水解产氢基础理论和催化剂活性研究。到目前为止,已获得了国家实用新型专利1项。参与了多项江苏省高等学校自然科学研究项目和多个横向课题项目;靳惠明,扬州大学教授,硕士研究生导师,扬州大学机械工程学院材料加工工程学科带头人,兼任中国机械工程学会机械制造分会委员、江苏省真空与薄膜学会高级会员、扬州大学无党派高知联宜会理事等职,扬州大学优秀青年骨干教师。1990年本科毕业于大连理工大学应用化学专业;1993年硕士毕业于中科院金属研究所,从事材料腐蚀磨损研究;1996年博士毕业于中科院金属研究所,从事高温合金及抗氧化涂层研究。先后任沈阳工业大学理学院副教授,哥伦比亚国立安第克大学材料工程学院责任研究员,2003年起在扬州大学机械工程学院材料成型及控制工程专业任教,从事材料加工及材料表面工程方面的教学与科研工作。主要研究方向和领域包括:材料制备、材料表面改性、金属/陶瓷复合涂层、纳米材料等。先后主持和参加多项国家自然科学基金项目、辽宁省自然科学基金项目、江苏省高校自然科学基金项目及横向科研课题10余项,发表科研论文40余篇,其中被SCI、EI收录30余篇。
引用本文:    
邵阳阳, 靳惠明, 俞亮, 高吉成, 陈悦蓉. Mo掺杂Co-B非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报, 2020, 34(2): 2063-2066.
SHAO Yangyang, JIN Huiming, YU Liang, GAO Jicheng, CHEN Yuerong. Preparation of Mo-doped Co-B Amorphous Alloy and Its Catalytic Performance on Sodium Borohydride Hydrolysis for Hydrogen Production. Materials Reports, 2020, 34(2): 2063-2066.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090130  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2063
1 Pukazhselvan D, Kumar V, Singh S K. Nano Energy, 2012, 1(4),566.2 Sandy Thomas C E, Lloyd A C. International Journal of Hydrogen Energy, 2017,42(12),8406.3 Kim K, Kim T, Lee K, Kwon S. Journal of Power Sources, 2011, 196,9069.4 Nunes H X, Ferreira M J F, Rangel C M, et al. International Journal of Hydrogen Energy, 2016, 41(34),15426.5 Retnamma R, Novais A Q, Rangel C M. International Journal of Hydrogen Energy, 2011, 36(16),9772.6 Biniwale R B, Rayalu S, Devotta S, et al. International Journal of Hydrogen Energy, 2008,33(1),360.7 Genç A E, Kutl B. International Journal of Hydrogen Energy, 2018, 42(31),14347.8 Wee J H, Lee K Y, Kim S H. Fuel Processing Technology, 2006, 87(9),811.9 Muir S S, Yao X. International Journal of Hydrogen Energy, 2011, 36(10),5983.10 Liu C H. International Journal of Hydrogen Energy, 2009, 34(5),2153.11 Liang Y, Wang P, Dai H B. Progress in Chemistry, 2009, 21(10),2219.12 Wang L, Li Z, Zhang Y, et al. Journal of Alloys & Compounds, 2017, 702,649.13 Dai H B, Liang Y, Wang P, et al. Journal of Power Sources, 2008, 177(1),17.14 Cho K W, Kwon H S. Catalysis Today, 2007, 120(3-4),298.15 Eom K S, Cho K W, Kwon H S. Journal of Power Sources, 2008,180(1),484.16 Zhang X W,Zhao J Z,Cheng F Y. Journal of Power Sources, 2010,35(15),8363.17 Wei L, Ma M X, Jing X M, et al. The Chinese Journal of Nonferrous Me-tals, 2017(8), 1651(in Chinese).魏磊, 马麦霞, 景学敏, 等. 中国有色金属学报, 2017(8), 1651.18 Dandan K, Yang T, Yuan L. International Journal of Hydrogen Energy, 2015, 40,7308.19 Fernandes R, Patel N, Miotello A. Applied Catalysis B: Environmental, 2009, 92,68.20 Chou C C,Hsieh C H,Chen B H. Energy, 2015, 90,1973.
[1] 甘建昌, 胡海平, 苏明, 陈锋, 王辉虎. 金属硫化物/g-C3N4异质结的构建及其光催化性能改善与应用[J]. 材料导报, 2022, 36(10): 20100188-10.
[2] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[3] 吴国玉, 郑晔, 王明涌, 邢志军. 化学还原法制备高分散纳米铂粒子[J]. 材料导报, 2021, 35(Z1): 406-410.
[4] 芦宝华, 徐宁, 陈晓彤, 谢晓红, 李久明. 硼氢化钠还原烯烃和炔烃的研究进展[J]. 材料导报, 2021, 35(5): 5214-5221.
[5] 付文英, 司司, 魏永生, 刘妍, 陈佳琪, 韦露, 赵新生. 硼氢化钠循环再生工艺的研究进展[J]. 材料导报, 2021, 35(15): 15017-15025.
[6] 汪洪波, 谢志雄, 董仕节, 黄海军, 高海燕. AlTi5B催化富铝合金水解产氢反应——一种高效经济制备氢气的方法[J]. 材料导报, 2020, 34(4): 4062-4067.
[7] 魏永生, 王茂森, 康健, 马瑞欣, 韦露, 李建伟, 赵新生. 电沉积法制备三维泡沫镍负载钴催化剂及其工艺条件优化[J]. 材料导报, 2018, 32(19): 3304-3308.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed