FeO2与FeO2He晶格热导率与声速特征的第一性原理研究

吴潇 马阳阳 杨述 何开华 姬广富

吴潇, 马阳阳, 杨述, 何开华, 姬广富. FeO2与FeO2He晶格热导率与声速特征的第一性原理研究[J]. 高压物理学报, 2021, 35(3): 032201. doi: 10.11858/gywlxb.20200659
引用本文: 吴潇, 马阳阳, 杨述, 何开华, 姬广富. FeO2与FeO2He晶格热导率与声速特征的第一性原理研究[J]. 高压物理学报, 2021, 35(3): 032201. doi: 10.11858/gywlxb.20200659
WU Xiao, MA Yangyang, YANG Shu, HE Kaihua, JI Guangfu. First Principles Study of Lattice Thermal Conductivity and Sound Velocity Characteristics of FeO2 and FeO2He[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 032201. doi: 10.11858/gywlxb.20200659
Citation: WU Xiao, MA Yangyang, YANG Shu, HE Kaihua, JI Guangfu. First Principles Study of Lattice Thermal Conductivity and Sound Velocity Characteristics of FeO2 and FeO2He[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 032201. doi: 10.11858/gywlxb.20200659

FeO2与FeO2He晶格热导率与声速特征的第一性原理研究

doi: 10.11858/gywlxb.20200659
基金项目: 国家自然科学基金(41474067)
详细信息
    作者简介:

    吴 潇(1995-),女,硕士研究生,主要从事高温高压材料的模拟计算研究. E-mail:wuxcug@163.com

    通讯作者:

    何开华(1978-),男,教授,主要从事纳米材料和矿物材料的模拟计算研究. E-mail:khhe@cug.edu.cn

  • 中图分类号: O521.2

First Principles Study of Lattice Thermal Conductivity and Sound Velocity Characteristics of FeO2 and FeO2He

  • 摘要: 高温高压实验研究发现了一种新型铁氧化物FeO2,其可以稳定地存在于地球内部。理论研究表明,FeO2可以与He在高温高压下发生反应,形成FeO2He,借此解释了地球内部He的赋存机制。采用第一性原理方法,对比研究了FeO2和FeO2He两种矿物在下地幔条件下的晶格热导率和声速特征。计算结果表明,FeO2He的晶格热导率比FeO2的晶格热导率高很多,并且其随压力的变化也比FeO2大。两种矿物的晶格热导率与温度的变化关系都接近T −1,与传统半导体的结论一致。分析表明,两种矿物的群速度差异较小,对晶格热导率的影响有限;两种矿物的非谐散射率有较大的差异,是导致两者晶格热导率差异的主要原因。FeO2He的剪切和压缩波波速都比FeO2大一些,但两者的波速都比下地幔主要矿物钙钛矿的波速小,符合D″层超低声速的特征。

     

  • 图  (a) 300 K下FeO2和FeO2He的热导率($ \kappa$)随压力的变化关系;(b) FeO2和FeO2He的热导率随温度的变化关系

    Figure  1.  (a) Pressure dependence of the thermal conductivity ($\kappa$) of FeO2 and FeO2He at 300 K; (b) temperature dependence of the thermal conductivity of FeO2 and FeO2He

    图  FeO2和FeO2He在300 K下的累计晶格热导率随频率的变化关系

    Figure  2.  Frequency dependence of cumulative thermal conductivity (${\kappa}$) of FeO2 and FeO2He at 300 K

    图  FeO2 (a)和FeO2He (b)在135 GPa下的声子谱

    Figure  3.  Phonon dispersions of FeO2 (a) and FeO2He (b) at 135 GPa

    图  FeO2和FeO2He在135 GPa下的群速度(a)和散射率(b)随频率的变化关系

    Figure  4.  Frequency dependence of the group velocity (${v_{{q}}}$) (a) and scattering rate (${\tau ^{ - 1}_{{q}}}$) (b) of FeO2 and FeO2He at 135 GPa

    图  135 GPa下FeO2和FeO2He的$W_q $随频率的变化关系

    Figure  5.  Frequency dependence of $W_q $ of FeO2 and FeO2He at 135 GPa

    图  FeO2和FeO2He的体积模量(B)、剪切模量(G) (a)和声速(b)随压力的变化关系(300 K)

    Figure  6.  Pressure dependence of bulk modulus (B) and shear modulus (G) (a) and wave velocity (b) of FeO2 and FeO2He (300 K)

  • [1] OZAWA H, HIROSE K, TATENO S, et al. Phase transition boundary between B1 and B8 structures of FeO up to 210 GPa [J]. Physics of the Earth and Planetary Interiors, 2010, 179(3): 157–163.
    [2] BYKOVA E, DUBROVINSKY L, DUBROVINSKAIA N, et al. Structural complexity of simple Fe2O3 at high pressures and temperatures [J]. Nature Communications, 2016, 7: 10661. doi: 10.1038/ncomms10661
    [3] WOODLAND A B, FROST D J, TROTS D M, et al. In situ observation of the breakdown of magnetite (Fe3O4) to Fe4O5 and hematite at high pressures and temperatures [J]. American Mineralogist, 2012, 97(10): 1808–1811. doi: 10.2138/am.2012.4270
    [4] LAVINA B, DERA P, KIM E, et al. Discovery of the recoverable high-pressure iron oxide Fe4O5 [J]. Proceedings of the National Academy of Sciences, 2011, 108(42): 17281–17285. doi: 10.1073/pnas.1107573108
    [5] LAVINA B, MENG Y. Unraveling the complexity of iron oxides at high pressure and temperature: synthesis of Fe5O6 [J]. Science Advances, 2015, 1(5): e1400260.
    [6] HU Q, KIM D Y, LIU J, et al. Dehydrogenation of goethite in Earth’s deep lower mantle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(7): 1498–1501. doi: 10.1073/pnas.1620644114
    [7] HU Q, KIM D Y, YANG W, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles [J]. Nature, 2016, 534(7606): 241–244. doi: 10.1038/nature18018
    [8] BIRCH F. Elasticity and constitution of the Earth’s interior [J]. Journal of Geophysical Research Atmospheres, 1952, 57(2): 227–286. doi: 10.1029/JZ057i002p00227
    [9] TERASAKI H, FISCHER R A. Mechanisms and geochemical models of core formation: physics and chemistry of the lower mantle and core [M]. Wiley, 2016:181−190.
    [10] LIU J, HU Q, KIM D Y, et al. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones [J]. Nature, 2017, 551(7681): 494–497. doi: 10.1038/nature24461
    [11] LIU H, YAO Y, KL UG, DENNIS D. Stable structures of He and H2O at high pressure [J]. Physical Review B, 2015, 91(1): 014102. doi: 10.1103/PhysRevB.91.014102
    [12] DONG X, OGANOV A R, GONCHAROV A F, et al. A stable compound of helium and sodium at high pressure [J]. Nature Chemistry, 2017, 9(5): 440–445. doi: 10.1038/nchem.2716
    [13] MONSERRAT B, MARTINEZ-CANALES M, NEEDS R J, et al. Helium-iron compounds at terapascal pressures [J]. Physical Review Letters, 2018, 121(1): 015301. doi: 10.1103/PhysRevLett.121.015301
    [14] LIU Z, BOTANA J, HERMANN A, et al. Chemistry without chemical bonds: reactivity of He with ionic compounds under high pressure [J]. Nature Communications, 2018, 9(1): 951. doi: 10.1038/s41467-018-03284-y
    [15] HART S R, HAURI E H, OSCHMANN L A, et al. Mantle plumes and entrainment: isotopic evidence [J]. Science, 1992, 256(5056): 517–520. doi: 10.1126/science.256.5056.517
    [16] JACKSON M G, CARLSON R W, KURZ M D, et al. Evidence for the survival of the oldest terrestrial mantle reservoir [J]. Nature, 2010, 466(7308): 853–856. doi: 10.1038/nature09287
    [17] JACKSON M G, KONTER J G, BECKER T W. Primordial helium entrained by the hottest mantle plumes [J]. Nature, 2017, 542(7641): 340–343. doi: 10.1038/nature21023
    [18] ZHANG J, LV J, LI H, et al. Rare helium-bearing compound FeO2He stabilized at deep-Earth conditions [J]. Physical Review Letters, 2018, 121(25): 255703. doi: 10.1103/PhysRevLett.121.255703
    [19] JANG B G, KIM D Y, SHIM J H. Metal-insulator transition and the role of electron correlation in FeO2 [J]. Physical Review B, 2017, 95(7): 075144. doi: 10.1103/PhysRevB.95.075144
    [20] HUANG S Y, SHAN Q, WU X. Elasticity and anisotropy of the pyrite-type FeO2H-FeO2 system in Earth’s lowermost mantle [J]. Journal of Earth Science, 2018: 1293–1301.
    [21] LU C, AMSLER M, CHEN C. Unraveling the structure and bonding evolution of the newly discovered iron oxide FeO2 [J]. Physical Review B, 2018, 98(5): 054102. doi: 10.1103/PhysRevB.98.054102
    [22] ZHANG X L, NIU Z W, ZHAO Z J, et al. First-principles thermoelasticity and stability of pyrite-type FeO2 under high pressure and temperature [J]. Journal of Alloys and Compounds, 2017, 719: 42–46. doi: 10.1016/j.jallcom.2017.05.143
    [23] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [24] CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochastic method [J]. Physical Review Letters, 1980, 45(7): 566–569. doi: 10.1103/PhysRevLett.45.566
    [25] KRUKAU A V, VYDROV O A, IZMAYLOV A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals [J]. The Journal of Chemical Physics, 2006, 125(22): 3865.
    [26] MONKHORST H J. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 16(4): 1748–1749.
    [27] TOGO A, OBA F, TANAKA I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures [J]. Physical Review B, 2008, 78(13): 134106. doi: 10.1103/PhysRevB.78.134106
    [28] LI W, CARRETE, KATCHO N, et al. ShengBTE: a solver of the Boltzmann transport equation for phonons [J]. Computer Physics Communications, 2014, 185(6): 1747–1758. doi: 10.1016/j.cpc.2014.02.015
    [29] LI W, MINGO N. Lattice dynamics and thermal conductivity of skutterudites CoSb3 and IrSb3 from first principles: why IrSb3 is a better thermal conductor than CoSb3 [J]. Physical Review B, 2014, 90(9): 094302. doi: 10.1103/PhysRevB.90.094302
    [30] LI W, MINGO N. Thermal conductivity of fully filled skutterudites: role of the filler [J]. Physical Review B, 2014, 89(18): 184304. doi: 10.1103/PhysRevB.89.184304
    [31] SONG Y L, HE K H, SUN J, et al. Effects of iron spin transition on the electronic structure, thermal expansivity and lattice thermal conductivity of ferropericlase: a first principles study [J]. Scientific Reports, 2019, 9(1): 4172. doi: 10.1038/s41598-019-40454-4
    [32] OHTA K, YAGI T, HIROSE K, et al. Thermal conductivity of ferropericlase in the Earth’s lower mantle [J]. Earth and Planetary Science Letters, 2017, 465: 29–37. doi: 10.1016/j.jpgl.2017.02.030
    [33] DEKURA H, TSUCHIYA T. Ab initio lattice thermal conductivity of MgO from a complete solution of the linearized Boltzmann transport equation [J]. Physical Review B, 2017, 95(18): 184303. doi: 10.1103/PhysRevB.95.184303
    [34] OHTA K, YAGI T, TAKETOSHI N, et al. Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core-mantle boundary [J]. Earth and Planetary Science Letters, 2012, 349/350: 109–115. doi: 10.1016/j.jpgl.2012.06.043
    [35] DEKURA H, TSUCHIYA T. Lattice thermal conductivity of MgSiO3 postperovskite under the lowermost mantle conditions from ab initio anharmonic lattice dynamics [J]. Geophysical Research Letters, 2019, 46(22): 12919–12926. doi: 10.1029/2019GL085273
    [36] XU Y Y, SHANKLAND T J, LINHARDT S, et al. Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K [J]. Physics of the Earth and Planetary Interiors, 2004, 143/144: 321–336. doi: 10.1016/j.pepi.2004.03.005
    [37] GHADERI N, ZHANG D B, ZHANG H, et al. Lattice thermal conductivity of MgSiO3 perovskite from first principles [J]. Scientific Reports, 2017, 7(1): 5417. doi: 10.1038/s41598-017-05523-6
    [38] CARACAS R, COHEN R E. Effect of chemistry on the stability and elasticity of the perovskite and post-perovskite phases in the MgSiO3-FeSiO3-Al2O3 system and implications for the lowermost mantle [J]. Geophysical Research Letters, 2005, 32(16): 367–384.
  • 加载中
图(6)
计量
  • 文章访问数:  3276
  • HTML全文浏览量:  1590
  • PDF下载量:  51
出版历程
  • 收稿日期:  2020-12-21
  • 修回日期:  2021-01-20

目录

    /

    返回文章
    返回