Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T22:46:23.265Z Has data issue: false hasContentIssue false

Parageneses and compositional variations of Sb oxyminerals from Långban-type deposits in Värmland, Sweden

Published online by Cambridge University Press:  05 July 2018

Dan Holtstam
Affiliation:
Department of Mineralogy, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
Per Nysten
Affiliation:
Institute of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden
Kjell Gatedal
Affiliation:
Xenos Mineral, Rågvägen 7, SE-713 34 Nora, Sweden

Abstract

The Långban, Nordmark and Jakobsberg Mn-Fe deposits contain the only known occurrences of filipstadite and manganostibite (ideal formulae (Mn, Mg)2(Sb0.55+Fe0.53+)O4 and Mn72+SbAsO12, respectively). Filipstadite from Nordmark is newly recognized, and occurs in assemblages with svabite-johnbaumite, calcite, tephroite-forsterite, phlogopite-kinoshitalite, tilasite, ±jacobsite, ±plumbia roméite, ±adelite, ±hedyphane. Manganostibite from Långban and Jakobsberg is reported for the first time, and the mineral is generally associated with katoptrite, tephroite, humite-group minerals, calcite, svabite, allactite, manganosite, hausmannite, jacobsite, spinel s.s., etc. Whereas filipstadite is clearly secondary relative to the major part of the matrix components, manganostibite is believed to have formed coevally with the principal ore and skarn minerals at these deposits.

The previously known compositional ranges are extended. Based on electron-microprobe analyses, Nordmark filipstadite contains 4.1–7.3 MgO, 0.0–0.5 Al2O3, 30.5–45.3 MnO, 17.0–40.1 Fe2O3, 0.2–0.9 ZnO, 19.9–29.9 Sb2O5 (all in wt.%), corresponding to 58–100 mol.% of a pure filipstadite component. Associated jacobsites show Sb2O5 contents of up to c. 5 wt.%. Manganostibites (all three deposits considered) contain 1.0–2.9 MgO, 2.8–3.8 SiO2, 57.4–60.3 MnO, 0.2–3.5 Mn2O3, 0.3–2.0 Fe2O3, 0.0–2.4 ZnO, 21.5–23.0 Sb2O5, 7.7–10.0 As2O5 (all in wt.%). Si and trivalent cations are incorporated via a (Mn3+,Fe3+) + Si4+=Mn2+ + As5+ exchange mechanism, which improves the local charge balance at tetrahedral structural sites dominated by As.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Björk, L. (1986) Beskrivning till Berggrundskartan Filipstad NV. Sver. Geol. Undersök., Af 147, 1110.Google Scholar
Boström, K., Rydell, H. and Joensuu, O. (1979) Långban — an exhalative sedimentary deposit? Econ. Geol., 74, 1002–11.CrossRefGoogle Scholar
Brugger, J., Gieré, R., Graeser, S. and Meisser, N. (1997) The crystal chemistry of roméite. Contrib. Mineral. Petrol., 127, 136–46.CrossRefGoogle Scholar
Dunn, P.J. (1986) Manganostibite: new chemical data, and its relation to kolicite and holdenite. Geol. Fören. Stockholm Förhand., 109, 101–2.CrossRefGoogle Scholar
Dunn, P.J., Peacor, D.R., Criddle, A.J. and Stanley, C.J. (1988 a) Filipstadite, a new Mn-Fe3+-Sb derivative of spinel, from Långban, Sweden. Amer. Mineral., 73, 413–9.Google Scholar
Dunn, P.J., Peacor, D.R., Criddle, A.J. and Stanley, C.J. (1988 b) Ingersonite, a new calcium-manganese antimonate related to pyrochlore, from Långban, Sweden. Amer. Mineral., 73, 405–12.Google Scholar
Holtstam, D. (1993) A second occurrence of filipstadite in Värmland, Sweden. Geol. Fören. Stockholm Förhand., 115, 239–40.CrossRefGoogle Scholar
Holtstam, D. (1994) Mineral chemistry and parageneses of magnetoplumbite from the Filipstad district, Sweden. Eur. J. Mineral., 6, 711–24.CrossRefGoogle Scholar
Holtstam, D. and Langhof, J. (1995) Metamorphic harkerite from Nordmarks odalfält, Värmland, Sweden. GFF, 117, 151–2.CrossRefGoogle Scholar
Igelström, L.J. (1884) Manganostibiit, ett nytt mineral från Nordmarks grufvor i Vermland. Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar 1884, No 4, 8993.Google Scholar
Lundström, I. (1995) Beskrivning till berggrundskartorna Filipstad SO och NO. Sveriges Geol. Undersök., Af 177-185, 1218.Google Scholar
Magnusson, N.H. (1929) Nordmarks malmtrakt. Sveriges Geol. Unders., Ca 13, 198. (Swedish with English summary)Google Scholar
Magnusson, N.H. (1930) Långbans malmtrakt. Sveriges Geol. Unders., Ca 23, 1111. (Swedish with English summary)Google Scholar
Mason, B. (1943) Mineralogical aspects of the system FeO-Fe2O3-MnO-Mn2O3 . Geol. Fören. Stockholm Förhand., 65, 97180.CrossRefGoogle Scholar
Matsubara, S., Kato, A. and Nagashima, K. (1979) Iwakiite, Mn2+(Fe3+,Mn3+)2O4, a new tetragonal spinelloid mineral from the Gozaisho mine, Fukushima prefecture, Japan. Mineral. J., 9, 383–91.CrossRefGoogle Scholar
Moore, P.B. (1968) Contributions to Swedish mineralogy. II. Melanostibite and manganostibite, two unusual antimony minerals. The identity of ferrostibian with långbanite. Ark. Min. Geol., 4(23), 449–58.Google Scholar
Moore, P.B. (1970 a) Mineralogy and chemistry of Långban-type deposits in Bergslagen, Sweden. Mineral. Record, 1, 154–72.Google Scholar
Moore, P.B. (1970 b) Manganostibite: A novel cubic close-packed structure type. Amer. Mineral., 55, 1489–99.Google Scholar
Nysten, P. and Ericsson, T. (1994) Fe-rich långbanite from the Nyberget ore-field, Sweden. Neues Jahrb. Mineral., Mh., 557–66.Google Scholar
Smith, D.C. and Perseil, E.-A. (1997) Sb-rich rutile in the manganese concentrati ons at St. Marcel- Praborna, Aosta Valley, Italy: petrography and crystal-chemistry. Mineral. Mag., 61, 655–69.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1984) A new model for quantitative X-ray microanalysis. I. Application to the analysis of homogeneous samples. La Recherche Aérospatiale, 3, 1336.Google Scholar
Raade, G., Mladeck, M.H., Din, V.K., Criddle, A.J. and Stanley, C.J. (1988) Blatterite, a new Sb-bearing Mn2+-Mn3+ member of the pinakiolite group, from Nordmark, Sweden. Neues Jahrb. Mineral., Mh., 121–36.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., A32, 751–67.CrossRefGoogle Scholar
Wink, B.W. (1996) Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams. Chem. Geol., 130, 2130.Google Scholar