法尼醇X受体天然激动剂的研究进展

明文华, 栾志琳, 张晓燕, 管又飞. 法尼醇X受体天然激动剂的研究进展[J]. 大连医科大学学报, 2021, 43(3): 244-250. doi: 10.11724/jdmu.2021.03.11
引用本文: 明文华, 栾志琳, 张晓燕, 管又飞. 法尼醇X受体天然激动剂的研究进展[J]. 大连医科大学学报, 2021, 43(3): 244-250. doi: 10.11724/jdmu.2021.03.11
MING Wenhua, LUAN Zhilin, ZHANG Xiaoyan, GUAN Youfei. Research progress on natural agonists of Farnesoid X receptor[J]. Journal of Dalian Medical University, 2021, 43(3): 244-250. doi: 10.11724/jdmu.2021.03.11
Citation: MING Wenhua, LUAN Zhilin, ZHANG Xiaoyan, GUAN Youfei. Research progress on natural agonists of Farnesoid X receptor[J]. Journal of Dalian Medical University, 2021, 43(3): 244-250. doi: 10.11724/jdmu.2021.03.11

法尼醇X受体天然激动剂的研究进展

  • 基金项目:
    国家自然科学基金项目(91639201, 81722010, 81601174)
详细信息

Research progress on natural agonists of Farnesoid X receptor

More Information
  • 摘要
  • HTML全文
  • 图表
  • 参考文献
    • 法尼醇X受体(Farnesoid X receptor,FXR),又称胆汁酸受体,因与代谢调节密切相关,FXR激动剂目前成为代谢性疾病治疗的药物研发热点。FXR天然激动剂来源广泛且大部分具有无或低毒副作用的特点,主要分为动物源性激动剂、植物源性激动剂和微生物源性激动剂三大类。动物源性激动剂包括鹅脱氧胆酸、胆酸、脱氧胆酸、石胆酸和熊去氧胆酸等内源性胆汁酸,以及雄甾酮;植物源性激动剂包括植物和植物提取物,如泽泻提取物、咖啡醇、香豆雌酚、葡萄内脂和薯蓣皂苷;微生物源性激动剂包括细格菌素。本文就FXR天然激动剂的研究进展进行综述。
    • 加载中
    • [1]

      Shin DJ, Wang L. Bile Acid-Activated Receptors: A Review on FXR and Other Nuclear Receptors[J]. Handb Exp Pharmacol, 2019, 256: 51-72. DOI:10.1007/164_2019_236.

      [2]

      Garcia M, Thirouard L, Sedès L, et al. Nuclear receptor metabolism of bile acids and xenobiotics: a coordinated detoxification system with impact on health and diseases[J]. Int J Mol Sci, 2018, 19(11): E3630. DOI:10.3390/ijms19113630.

      [3]

      Massafra V, van Mil SWC. Farnesoid X receptor: a "homeostat" for hepatic nutrient metabolism[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(1): 45-59. DOI:10.1016/j.bbadis.2017.10.003.

      [4]

      Younossi ZM, Ratziu V, Loomba R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial[J]. Lancet, 2019, 394(10215): 2184-2196. DOI:10.1016/S0140-6736(19)33041-7.

      [5]

      Mudaliar S, Henry RR, Sanyal AJ, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease[J]. Gastroenterology, 2013, 145(3): 574-582. e1. DOI:10.1053/j.gastro.2013.05.042.

      [6]

      Bowlus CL, Pockros PJ, Kremer AE, et al. Long-term obeticholic acid therapy improves histological endpoints in patients with primary biliary cholangitis[J]. Clin Gastroenterol Hepatol, 2020, 18(5): 1170-1178. e6. DOI:10.1016/j.cgh.2019.09.050.

      [7]

      Flatt B, Martin R, Wang TL, et al. Discovery of XL335(WAY-362450), a highly potent, selective, and orally active agonist of the farnesoid X receptor (FXR)[J]. J Med Chem, 2009, 52(4): 904-907. DOI:10.1021/jm8014124.

      [8]

      Gai Z, Chu L, Xu Z, et al. Farnesoid X receptor activation protects the kidney from ischemia-reperfusion damage[J]. Sci Rep, 2017, 7(1): 9815. DOI:10.1038/s41598-017-10168-6.

      [9]

      Zhao K, He JL, Zhang Y, et al. Activation of FXR protects against renal fibrosis via suppressing Smad3 expression[J]. Sci Rep, 2016, 6: 37234. DOI:10.1038/srep37234.

      [10]

      Nevens F, Andreone P, Mazzella G, et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis[J]. N Engl J Med, 2016, 375(7): 631-643. DOI:10.1056/nejmoa1509840.

      [11]

      Di Ciaula A, Garruti G, Lunardi Baccetto R, et al. Bile acid physiology[J]. Ann Hepatol, 2017, 16(suppl. 1: s3-105. ): s4-s14. DOI:10.5604/01.3001.0010.5493.

      [12]

      Kast HR, Nguyen CM, Sinal CJ, et al. Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids[J]. Mol Endocrinol, 2001, 15(10): 1720-1728. DOI:10.1210/mend.15.10.0712.

      [13]

      Li C, Li J, Weng X, et al. Farnesoid X receptor agonist CDCA reduces blood pressure and regulates vascular tone in spontaneously hypertensive rats[J]. J Am Soc Hypertens, 2015, 9(7): 507-516. e7. DOI:10.1016/j.jash.2015.04.006.

      [14]

      European Association for the Study of the Liver. EASL Clinical Practice Guidelines: the diagnosis and management of patients with primary biliary cholangitis[J]. J Hepatol, 2017, 67(1): 145-172. DOI:10.1016/j.jhep.2017.03.022.

      [15]

      Hirschfield GM, Dyson JK, Alexander GJM, et al. The British Society of Gastroenterology/UK-PBC primary biliary cholangitis treatment and management guidelines[J]. Gut, 2018, 67(9): 1568-1594. DOI:10.1136/gutjnl-2017-315259.

      [16]

      Lew JL, Zhao AN, Yu JH, et al. The farnesoid X receptor controls gene expression in a ligand- and promoter-selective fashion[J]. J Biol Chem, 2004, 279(10): 8856-8861. DOI:10.1074/jbc.M306422200.

      [17]

      唐清, 王琳琳, 单庆文, 等. 熊去氧胆酸对婴儿胆汁淤积性肝炎多药耐药蛋白3及法尼醇受体基因表达的影响和意义[J]. 中国当代儿科杂志, 2013, 15(9): 756-758. DOI:10.7499/j.issn.1008-8830.2013.09.011.

      [18]

      Zhang YY, LaCerte C, Kansra S, et al. Comparative potency of obeticholic acid and natural bile acids on FXR in hepatic and intestinal in vitro cell models[J]. Pharmacol Res Perspect, 2017, 5(6): e00368. DOI:10.1002/prp2.368.

      [19]

      Mueller M, Thorell A, Claudel T, et al. Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity[J]. J Hepatol, 2015, 62(6): 1398-1404. DOI:10.1016/j.jhep.2014.12.034.

      [20]

      黎源, 马锦星, 石朝周. 鸡胆汁与蛇胆汁中主要结合胆汁酸的含量对比[J]. 中成药, 2003, 25(5): 420-421. DOI:10.3969/j.issn.1001-1528.2003.05.029.

      [21]

      Uchida A, Yamada T, Hayakawa T, et al. Taurochenodeoxycholic acid ameliorates and ursodeoxycholic acid exacerbates small intestinal inflammation[J]. Am J Physiol, 1997, 272(5 Pt 1): G1249-G1257. DOI:10.1152/ajpgi.1997.272.5.G1249.

      [22]

      Arndt H, Kullmann F, Schölmerich J, et al. Acute and chronic effects of different bile acids on indomethacin-induced intestinal inflammation[J]. Inflammation, 1997, 21(6): 553-567. DOI:10.1023/A:1027390920570.

      [23]

      李欣, 牛春宇, 毛伟, 等. TCDCA对大鼠脂肪代谢及其相关受体FXR表达量的影响[J]. 中国兽医学报, 2018, 38(7): 1430-1434, 1456. DOI:10.16303/j.cnki.1005-4545.2018.07.30.

      [24]

      张捷, 张超峰, 龚庆豪, 等. DCA对FXR的作用及结肠癌细胞生物学行为的影响[J]. 结直肠肛门外科, 2016, 22(2): 199-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DCGM201602025.htm

      [25]

      Wang S, Lai K, Moy FJ, et al. The nuclear hormone receptor farnesoid X receptor (FXR) is activated by androsterone[J]. Endocrinology, 2006, 147(9): 4025-4033. DOI:10.1210/en.2005-1485.

      [26]

      Chao F, Gong W, Li Y, et al. Effect of androsterone on scavenger receptor class B type I in human vascular endothelial cells[J]. Nan Fang Yi Ke Da Xue Xue Bao, 2009, 29(7): 1344-1347. http://europepmc.org/abstract/MED/19620049

      [27]

      程龙艳, 贾会玉, 陈光亮. 丹蛭降糖胶囊治疗2型糖尿病实验与临床研究进展[J]. 中医药临床杂志, 2014, 26(08): 870-872. DOI:10.16448/j.cjtcm.2014.08.040

      [28]

      李建会, 韩群英, 荆志伟, 等. 二黄降糖汤联合西药治疗气阴两虚证2型糖尿病并血脂代谢紊乱30例[J]. 中医研究, 2016, 29(06): 16-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYJ201606008.htm

      [29]

      Huo XK, Liu J, Yu ZL, et al. Alisma orientale extract exerts the reversing cholestasis effect by activation of farnesoid X receptor[J]. Phytomedicine, 2018, 42: 34-42. DOI:10.1016/j.phymed.2018.03.017.

      [30]

      Meng Q, Chen X, Wang C, et al. Protective effects of alisol B23-acetate from edible botanical Rhizoma alismatis against carbon tetrachloride-induced hepatotoxicity in mice[J]. Food Funct, 2015, 6(4): 1241-1250. DOI:10.1039/c5fo00082c.

      [31]

      Meng Q, Duan XP, Wang CY, et al. Alisol B23-acetate protects against non-alcoholic steatohepatitis in mice via farnesoid X receptor activation[J]. Acta Pharmacol Sin, 2017, 38(1): 69-79. DOI:10.1038/aps.2016.119.

      [32]

      Lin HR. Triterpenes from Alisma orientalis act as farnesoid X receptor agonists[J]. Bioorg Med Chem Lett, 2012, 22(14): 4787-4792. DOI:10.1016/j.bmcl.2012.05.057.

      [33]

      Urgert R, Katan MB. The cholesterol-raising factor from coffee beans[J]. Annu Rev Nutr, 1997, 17: 305-324. DOI:10.1146/annurev.nutr.17.1.305.

      [34]

      Woo SM, Min KJ, Seo BR, et al. Cafestol overcomes ABT-737 resistance in Mcl-1-overexpressed renal carcinoma Caki cells through down-regulation of Mcl-1 expression and upregulation of Bim expression[J]. Cell Death Dis, 2014, 5(11): e1514. DOI:10.1038/cddis.2014.472.

      [35]

      van Vlijmen BJ, van den Maagdenberg AM, Gijbels MJ, et al. Diet-induced hyperlipoproteinemia and atherosclerosis in apolipoprotein E3-Leiden transgenic mice[J]. J Clin Invest, 1994, 93(4): 1403-1410. DOI:10.1172/jci117117.

      [36]

      Post SM, de Roos B, Vermeulen M, et al. Cafestol increases serum cholesterol levels in apolipoprotein E*3-leiden transgenic mice by suppression of bile acid synthesis[J]. Arterioscler Thromb Vasc Biol, 2000, 20(6): 1551-1556. DOI:10.1161/01.atv.20.6.1551.

      [37]

      Boekschoten MV, Engberink MF, Katan MB, et al. Reproducibility of the serum lipid response to coffee oil in healthy volunteers[J]. Nutr J, 2003, 2: 8. DOI:10.1186/1475-2891-2-8.

      [38]

      Ricketts ML, Boekschoten MV, Kreeft AJ, et al. The cholesterol-raising factor from coffee beans, cafestol, as an agonist ligand for the farnesoid and pregnane X receptors[J]. Mol Endocrinol, 2007, 21(7): 1603-1616. DOI:10.1210/me.2007-0133.

      [39]

      Kanayama T, Mamiya S, Nishihara T, et al. Basis of a high-throughput method for nuclear receptor ligands[J]. J Biochem, 2003, 133(6): 791-797. DOI:10.1093/jb/mvg101.

      [40]

      Takahashi M, Kanayama T, Yashiro T, et al. Effects of coumestrol on lipid and glucose metabolism as a farnesoid X receptor ligand[J]. Biochem Biophys Res Commun, 2008, 372(3): 395-399. DOI:10.1016/j.bbrc.2008.04.136.

      [41]

      Mori H, Niwa K, Zheng Q, et al. Cell proliferation in cancer prevention; effects of preventive agents on estrogen-related endometrial carcinogenesis model and on an in vitro model in human colorectal cell[J]. Mutat Res, 2001, 480-481: 201-207. DOI:10.1016/s0027-5107(01)00200-7.

      [42]

      杨秀伟, 徐波, 冉福香, 等. 40种香豆素类化合物对人胃癌细胞株BGC和人肝癌细胞株BEL-7402细胞生长抑制活性的筛选[J]. 中国现代中药, 2006, 8(11): 7. DOI:10.13313/j.issn.1673-4890.2006.11.003

      [43]

      Kuroyanagi K, Kang MS, Goto T, et al. Citrus auraptene acts as an agonist for PPARs and enhances adiponectin production and MCP-1 reduction in 3T3-L1 adipocyt[J]. Biochem Biophys Res Commun, 2008, 366(1): 219-225. DOI:10.1016/j.bbrc.2007.11.119.

      [44]

      Epifano F, Molinaro G, Genovese S, et al. Neuroprotective effect of prenyloxycoumarins from edible vegetables[J]. Neurosci Lett, 2008, 443(2): 57-60. DOI:10.1016/j.neulet.2008.07.062.

      [45]

      Gao XG, Fu T, Wang CY, et al. Computational discovery and experimental verification of farnesoid X receptor agonist auraptene to protect against cholestatic liver injury[J]. Biochem Pharmacol, 2017, 146: 127-138. DOI:10.1016/j.bcp.2017.09.016.

      [46]

      Li H, Huang W, Wen Y, et al. Anti-thrombotic activity and chemical characterization of steroidal saponins from Dioscorea zingiberensis C.H. Wright[J]. Fitoterapia, 2010, 81(8): 1147-1156. Doi:10.1016/j.fitote.2010.07.016.

      [47]

      Hsieh MJ, Tsai TL, Hsieh YS, et al. Dioscin-induced autophagy mitigates cell apoptosis through modulation of PI3K/Akt and ERK and JNK signaling pathways in human lung cancer cell lines[J]. Arch Toxicol, 2013, 87(11): 1927-1937. Doi:10.1007/s00204-013-1047-z.

      [48]

      Cho J, Choi H, Lee J, et al. The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica[J]. Biochim Biophys Acta, 2013, 1828(3): 1153-1158. Doi:10.1016/j.bbamem.2012.12.010.

      [49]

      Lu B, Xu Y, Xu L, et al. Mechanism investigation of dioscin against CCl4-induced acute liver damage in mice[J]. Environ Toxicol Pharmacol, 2012, 34(2): 127-135. Doi:10.1016/j.etap.2012.03.010.

      [50]

      Tao X, Wan X, Xu Y, et al. Dioscin attenuates hepatic ischemia-reperfusion injury in rats through inhibition of oxidative-nitrative stress, inflammation and apoptosis[J]. Transplantation, 2014, 98(6): 604-611. Doi:10.1097/TP.0000000000000262.

      [51]

      Tao X, Sun X, Yin L, et al. Dioscin ameliorates cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via HMGB-1 inhibition[J]. Free Radic Biol Med, 2015, 84: 103-115. Doi:10.1016/j.freeradbiomed.2015.03.003.

      [52]

      Qi M, Zheng L, Qi Y, et al. Dioscin attenuates renal ischemia/reperfusion injury by inhibiting the TLR4/MyD88 signaling pathway via up-regulation of HSP70[J]. Pharmacol Res, 2015, 100: 341-352. Doi:10.1016/j.phrs.2015.08.025.

      [53]

      Liu M, Xu Y, Han X, et al. Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway[J]. Sci Rep, 2015, 5: 18038. Doi:10.1038/srep18038.

      [54]

      Zhang YM, Xu YW, Qi Y, et al. Protective effects of dioscin against doxorubicin-induced nephrotoxicity via adjusting FXR-mediated oxidative stress and inflammation[J]. Toxicology, 2017, 378: 53-64. DOI:10.1016/j.tox.2017.01.007.

      [55]

      Nakanishi S, Toki S, Saitoh Y, et al. Isolation of myosin light chain kinase inhibitors from microorganisms: dehydroaltenusin, altenusin, atrovenetinone, and cyclooctasulfur[J]. Biosci Biotechnol Biochem, 1995, 59(7): 1333-1335. DOI:10.1271/bbb.59.1333.

      [56]

      Zheng ZH, Zhao ZM, Li SQ, et al. Altenusin, a nonsteroidal microbial metabolite, attenuates nonalcoholic fatty liver disease by activating the farnesoid X receptor[J]. Mol Pharmacol, 2017, 92(4): 425-436. DOI:10.1124/mol.117.108829.

    计量
    • 文章访问数:  1536
    • PDF下载数:  253
    • 施引文献:  0
    出版历程
    收稿日期:  2020-05-25
    修回日期:  2021-05-10
    发布日期:  2021-06-20
    刊出日期:  2021-06-20

    目录

    /

    返回文章
    返回