Skip to main content

Optimization of ZnO Nano Particles Preparation and Its Performance as Electron Transfer Layer in Quantum Light-Emitting Diode

Buy Article:

$107.14 + tax (Refund Policy)

In this paper, different diameters ZnO Nano Particles (ZnO NPs) are prepared through wet chemistry method. The size effects on Quantum light-emitting diodes (QLED) performance are investigated. In addition, the influences of reaction temperature, reaction time and reactant ratio on ZnO size and performance of QLED are also studied. Transmission electron microscope (TEM), Ultraviolet-Visible spectroscopy (UV-Vis) absorption spectra and photoluminescence (PL) spectra are employed to analyze the influence of preparation conditions on optical properties of the ZnO NPs packaged QLED. The results show that 2.5 nm ZnO NPs can be obtained at 25 °C for 6 hours when the Zn2+:OH- ratio is 1:1. In comparison to the 5 nm ZnO QLED, the EQE of the 2.5 nm ZnO QLED has increased from 1% to 7.8%, and the brightness has increased from 8000 to 13000 cd/m2. When ZnO NPs solution concentration is 30 mg/ml and spin speed is 4000 rpm, the optimal turn-on voltages and luminous intensity of QLED can also be attained.

Keywords: Luminous Intensity; QLED; ZnO NPs

Document Type: Research Article

Affiliations: 1: Key Laboratory of Functional Materials and Applications of Fujian Province, College of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, PR China 2: Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, PR China

Publication date: 01 January 2022

More about this publication?
  • Journal of Nanoelectronics and Optoelectronics (JNO) is an international and cross-disciplinary peer reviewed journal to consolidate emerging experimental and theoretical research activities in the areas of nanoscale electronic and optoelectronic materials and devices into a single and unique reference source. JNO aims to facilitate the dissemination of interdisciplinary research results in the inter-related and converging fields of nanoelectronics and optoelectronics.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content