Skip to main content

Classification and Inspection of Debonding Defects in Solid Rocket Motor Shells Using Machine Learning Algorithms

Buy Article:

$107.14 + tax (Refund Policy)

Debonding problems along the propellant/liner/insulation interface are a critical factor affecting the integrity of solid rocket motors and one of the major causes of their structural failure. Due to the complexity of interface debonding detection and its low accuracy, a method of wavelet packet transform (WPT) combined with machine learning is proposed. In this research, multi-layer structure specimens were prepared to simulate the structure of a solid rocket motor. First, ultrasonic non-destructive testing technology was used to obtain defect data. Then, WPT algorithm was employed to extract characteristic signals of the defect data. Moreover, k-nearest neighbor model, Random Forest model and support vector machine model were applied to the classification. The results showed that the accuracies of the three models were 84.67%, 90.66% and 95.33%, respectively. Positive results indicate that WPT with machine learning model exhibited excellent classification performance. Therefore, WPT combined with machine learning can achieve a precise classification of debonding defects and has the potential to assist or even automate the debonding inspection process of solid rocket motors.

Keywords: Classification; Machine Learning; Solid Rocket Motor Shells; Ultrasonic Non-Destructive Testing; Wavelet Packet Transform

Document Type: Research Article

Affiliations: 1: Shanxi Key Laboratory of Signal Capturing & Processing, North University of China, Taiyuan 030051, China 2: Department of Physics, Luliang University, Luliang, 033000, China

Publication date: 01 July 2021

More about this publication?
  • Journal of Nanoelectronics and Optoelectronics (JNO) is an international and cross-disciplinary peer reviewed journal to consolidate emerging experimental and theoretical research activities in the areas of nanoscale electronic and optoelectronic materials and devices into a single and unique reference source. JNO aims to facilitate the dissemination of interdisciplinary research results in the inter-related and converging fields of nanoelectronics and optoelectronics.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content