Skip to main content

Computational Sub-10 nm Plasmonic Nanogap Patterns by Block Copolymer Self-Assembly

Buy Article:

$107.14 + tax (Refund Policy)

Plasmonic nanoparticle (NP) arrays with narrow gaps have been suggested as an effective light collection solution for plasmonic structures. For an effective low-cost bottom-up strategy, block copolymer (BCP) self-assembly with evaporative metal-deposition is mentioned as one of the best effective ways to produce Au NP arrays with narrow gaps. In this paper, BCP self-assembly for nanopost-template arrays and metal-deposition over the nanotemplate surface for positional arrangement of Au NPs are described using a self-consistent field theory (SCFT) and a level-set method, respectively. According to the of BCP self-assembly simulation results, both the diameter of the cylinder post and gap size become larger due to the increase of polymerization degree (N). However, these parameters become smaller in terms of the increase of the Flory-Huggins interaction parameter χ. For plasmonic phenomena about a top-down incident wavelength of 600-nm, according to a rigorous coupled-wave analysis (RCWA), although the electric field around a single spherical post becomes larger at smaller diameter, there is no top-down plasmonic phenomenon at a gap size of 10-nm between nanoposts.

Keywords: Block Copolymer (BCP); Lithography; Lithography Simulation; Nanogap; Plasmonic

Document Type: Research Article

Affiliations: The Faculty of Liberal Arts, Hongik University, Seoul, 04066, Republic of Korea

Publication date: 01 July 2021

More about this publication?
  • Journal of Nanoelectronics and Optoelectronics (JNO) is an international and cross-disciplinary peer reviewed journal to consolidate emerging experimental and theoretical research activities in the areas of nanoscale electronic and optoelectronic materials and devices into a single and unique reference source. JNO aims to facilitate the dissemination of interdisciplinary research results in the inter-related and converging fields of nanoelectronics and optoelectronics.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content