Skip to main content

Ferromagnetic Cu3N Nanoparticles Demonstrated by X-ray Magnetic Circular Dichroism (XMCD) and the Density Functional Theory (DFT) Calculations

Buy Article:

$107.14 + tax (Refund Policy)

In recent years, ferromagnetism induced by natural defects of nonmagnetic semiconductors has been widely investigated and expected to be applied in spintronics. On this basis, we report the ferromagnetic behavior of copper (I) nitride (Cu3N) nanoparticles. A robust room temperature ferromagnetism is found in Cu3N nanoparticles with the saturated magnetization of 4 memu/g (300 K). Based on the element-specific X-ray magnetic circular dichroism (XMCD) and the density functional theory (DFT) analysis, it is concluded that the ferromagnetism of Cu3N nanoparticles originate from the surface Cu vacancies. Moreover, by increasing the surface area of Cu3N, the variation of magnetism is realized, and the surface states related to ferromagnetism is further revealed.

Keywords: Cu3N; Ferromagnetism; Nano-Particles; Surface Defects

Document Type: Research Article

Affiliations: Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education (MOE), Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education (MOE), Lanzhou University, Lanzhou 730000, P. R. China

Publication date: 01 December 2020

More about this publication?
  • Journal of Nanoelectronics and Optoelectronics (JNO) is an international and cross-disciplinary peer reviewed journal to consolidate emerging experimental and theoretical research activities in the areas of nanoscale electronic and optoelectronic materials and devices into a single and unique reference source. JNO aims to facilitate the dissemination of interdisciplinary research results in the inter-related and converging fields of nanoelectronics and optoelectronics.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content