Skip to main content

UV Photoluminescence of Alumino-Germano-Silicate Glass Optical Fiber Incorporated with Gd2O3 Nano-Particles Upon Illumination of Xenon-Lamp

Buy Article:

$107.14 + tax (Refund Policy)

Alumino-germano-silicate glass optical fiber incorporated with Gd2O3 nano-particles (NPs) was developed by using the modified chemical vapor deposition and the drawing process. The formation of spherical Gd2O3 NPs in the fiber core with average diameter of 10.8 nm was confirmed by the TEM. The distinct absorption peaks in the fiber preform appearing in the UV region at 205, 247, 253, 274, and 312 nm were due to the incorporated Gd2O3 NPs via reorganization of the seven 4f electrons into various multiplets of Gd ions. In the case of the optical fiber obtained by drawing of the preform at high temperature about 2150 °C, absorption peaks due to Gd2O3 NPs were found to appear at 383 and 455 nm, which were red-shifted from 274 and 312 nm of the preform, respectively, and it may be due to increase in the size of Gd2O3 NPs after the drawing process. To investigate the photoluminescence (PL) property for UV sensor applications, the PL of the fiber was obtained by illumination of the Xenon-lamp. A PL band appeared in the wavelength band from 370 nm to 450 nm, centering at about 400 nm, which can be attributed to the presence of Gd2O3 NPs embedded in the fiber core. It was also found that the PL intensity at 400 nm showed linear dependence with the excitation power from 0 to 400 W.

Keywords: Nano-Particles; Optical Absorption; Optical Fiber; Photoluminescence

Document Type: Research Article

Affiliations: 1: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea 2: Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea 3: Solar City Center, Korea Institute of Industrial Technology, Gwangju, 61012, Korea 4: Power System Laboratory, Korea Electric Power Corporation Research Institute, Dae-Jeon, 34056, Korea

Publication date: 01 March 2018

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content