| Peer-Reviewed

Substitution of Wheat Flour by Ginger Residue Flour in the Production of Bread

Received: 15 July 2023    Accepted: 11 August 2023    Published: 8 October 2023
Views:       Downloads:
Abstract

In developing countries, bread is a commodity inaccessible to the most vulnerable populations. This inaccessibility worsened with the war in Ukraine leading to an increase in the price of wheat on the world market. This study was carried out with the aim of valuing the residue of ginger in partial substitution of wheat flour by that of ginger in the manufacture of bread in order to reduce the cost of bread. The residues were obtained after grinding the ginger then maceration in water and at the end of filtration of the macerate. The residue obtained is dried at 60°C. for 24 hours then ground and packaged in a plastic bowl. The formulation was made by mixing 5 g of residue flour with 95 g of wheat flour. The physicochemical and functional properties of the flours were determined followed by the sensory evaluation of the breads produced. Substitution of 5% wheat flour resulted in reduced moisture (11.15%) and improved fiber content (5.15%). Regarding functional properties, the ginger residue resulted in an increase in water absorption capacity (128.21%) and swelling capacity (12.66 g/g). The sensory evaluation showed that the sweet bread produced with the ginger residue was the most appreciated. This study suggests that ginger residues could be valorized in the production of sweet bread.

Published in Bioprocess Engineering (Volume 7, Issue 2)
DOI 10.11648/j.be.20230702.11
Page(s) 32-36
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Residue, Ginger, Bread, Wheat Flour, Ginger Flour

References
[1] Ndangui C. B (2015). Production et caractérisation de farine de patate douce (Ipomoeabatatas. Lam): optimisation de la technologie de panification. Thèse. 151p.
[2] FAO (2023). Perspectives de la production mondiale de céréales en 2022-2023.
[3] Rinaldi M., Paciulli M., Caligiani A., Sgarbi E., Cirlini M., Dall'Asta C. & Chiavaro E. (2015). Farines de blé dur et de blé tendre au levain et pâte à pain. Journal des sciences et technologies alimentaires. 1-12. sagittifolium) cultivars. J Food SciTechnol 52 (6): 3440–3448.
[4] Nations Unies (2014). Perspectives mondiales d'urbanisation: la révision de 2014, Faits marquants (ST / ESA / SER.A / 352).
[5] FAOStat (2020). Classement des états d’Afrique par production de blé.
[6] Eriksson E., Koch K., C. Tortoe, Akonor P. T. & Oduro-Yeboah C. (2014). Évaluation des caractéristiques physiques et sensorielles du pain produit à partir de trois variétés de farine de manioc et de farine de blé. Alimentation et santé publique. 4 (5): 214-222.
[7] Bakare, H. A., M. O. Adegunwa, O. F. Osundahunsi & Olusanya J. O (2012). Composition et propriétés de collage de l'arbre à pain (Artocarpus communis Forst) Des États du sud-ouest du Nigeria. Nigeran Food Journal, 30: 11-17.
[8] Khalil A. H (2000). Quality characteristics of low-fat beef patties formulated with modified corn starch and water. Food Chemistry, 68: 61–68.
[9] Touré A, Oulai S. F, Assoi S, Sakm A. H, Soro Y. R & Coulibaly A (2019). Physicochemical, nutritional and technofunctional characterization of flours of millet (Pennisetum glaucum), maize (Zea mays) and soy (Glycine max) grown in the north of Ivory Coast. International Journal of Biotech Trends and Technology, 9 (4): 11-17.
[10] AOAC (1990). Official methods of analysis. Association of Official Analytical Chemists Ed., Washington DC, 684 p.
[11] FAO (2002). Food energy-methods of analysis and conversion factors. FAO Ed, Rome, 97p.
[12] Mahasukhonthachat, K., Sopade, P. A & Gidley, M. J. (2010). Kinetics of starch digestion in sorghum as affected by particle size. Journal of Food Engineering, (96), 18-28.
[13] Eriksson E. (2013). Flour from three local varieties of Cassava (Manihot Esculenta Crantz): Physico-chemical properties, bread making quality and sensory evaluation. Master Thesis. Publikation/Sverigeslantbruksuniversitet, Institutionenförlivsmedelsvetenskap, no 371 Uppsal.
[14] Cheftel JC & Cheftel H (1980). Introduction à la biochimie et à la technologie des aliments. Techniques et documentation, 3 ème édition. Lavoisier. Paris, France: 381p.
[15] Diallo K. S, Soro D, Kone K. Y, Assidjo N. E, Yao K & Gnakri D (2015). Fortification et substitution de la farine de blé par la farine de Voandzou (Vigna subterranea L. verdc) dans la production des produits de boulangerie. International Journal of Innovation and Scientific Research, 18 (2): 434-443.
[16] Aryee F. N. A., Oduro I., Ellis W. O & Afuakwa J. J. (2006). The physicochemical properties of flour samples from the roots of 31 varieties of cassava. Food Contr. 17: 916-922.
[17] Benlemmane S (2012). Formulation de pains composites a bases de melanges de farines de differentes cereales. Master, 134p.
[18] Gampoula R. H, Dzondo M. G, Moussounga J. E, Diakabana P, Pambou-Tobi N. P. G, Sompila W. G. T & Roniche N (2020). Mise au point d’un procédé de formulation d’une farine infantile à base d’igname (Discorea cayenensis) enrichie en protéines par incorporation d’additifs alimentaires d’origine agricole et de pêche. Journal of Biotechnology and Biochemistry, 6 (6): 24-32.
[19] Makhlouf H (2012). Propriétés physico-chimiques et rhéologiques de la farine et de l’amidon de taro (Colocasia esculenta L. Schott) variété Sosso du Tchad en fonction de la maturité et du mode de séchage. Thèse, 228p.
[20] Ponka R., TchatchouaNankap E L., TabotTambe S & Fokou E (2016). Composition nutritionnelle de quelques farines infantiles artisanales du Cameroun. International Journal of Innovation and Applied Studies. 16 (2): 280-292.
[21] Saldanha, L. G. (1995). Fiber in the diet of U. S. children: Results of national surveys. Paediatrics, 96, 994-996.
[22] Chanapamokkhot H & Thongngam M (2007). The chemical and physico-chemical properties of sorghum starch and flour. Kasetsart Journal (Nature. Science), 41: 343-349.
[23] Boateng M. A, Addo J. K, Okyere H, Adu-Dapaah H, Berchie J. N & Tetteh A (2013). Physicochemical and functional properties of proteinates of two Bambara groundnut (vigna subterranean) landraces. African Journal of Food Science and Technology, 4 (4) (2013) 64-70.
[24] Randrianantenaina A, Razafimahefa, Fenoradosoa T. A & Rajaonarison J. F (2018). Propriétés fonctionnelles des farines de trois variétés Malagasy de manioc les plus cultivées dans la Région de Diana. Afrique Science 14 (3): 274–281.
[25] El Hachem Z, Célino A, Challita G & Fréour S (2019). Effect of moisture absorption on the multi-scale behavior of flax fibers reinforced composites. Comptes Rendus des JNC 21 – Bordeaux INP. 10p.
[26] Oulaï S. F, Ahi A. P, Kouassi-Koffi J. D, Gonnety T. J, Faulet B. M, Dje K. M & Kouamé L. P (2014). Treatments Effects on Functional Properties of Breadfruit (Artocarpus altilis) Pulp Flour harvested in Côte d’Ivoire. International Journal of Recent Biotechnology, 2: 1-12.
[27] Boudries-Kaci N (2017). Caractérisation des amidons de Sorgho et de mil perlé cultivés dans le Sahara Algérien, Thèse doctorat, 208 p.
[28] Yaou B. I, Bessou F, Tchekessi C, Metohoue R, Toukourou F & Souza A. C (2012). Substitution de la farine de ble par la farine fermentee de manioc (lafu), dans la preparation du pain de boulangerie. J. Rech. Sci. Univ. Lomé (Togo), 14 (1): 1-9.
Cite This Article
  • APA Style

    Zoro Armel Fabrice, Miézan Bilé Aka Patrice, Kouassi Kouamé Appolinaire, Touré Abdoulaye. (2023). Substitution of Wheat Flour by Ginger Residue Flour in the Production of Bread. Bioprocess Engineering, 7(2), 32-36. https://doi.org/10.11648/j.be.20230702.11

    Copy | Download

    ACS Style

    Zoro Armel Fabrice; Miézan Bilé Aka Patrice; Kouassi Kouamé Appolinaire; Touré Abdoulaye. Substitution of Wheat Flour by Ginger Residue Flour in the Production of Bread. Bioprocess Eng. 2023, 7(2), 32-36. doi: 10.11648/j.be.20230702.11

    Copy | Download

    AMA Style

    Zoro Armel Fabrice, Miézan Bilé Aka Patrice, Kouassi Kouamé Appolinaire, Touré Abdoulaye. Substitution of Wheat Flour by Ginger Residue Flour in the Production of Bread. Bioprocess Eng. 2023;7(2):32-36. doi: 10.11648/j.be.20230702.11

    Copy | Download

  • @article{10.11648/j.be.20230702.11,
      author = {Zoro Armel Fabrice and Miézan Bilé Aka Patrice and Kouassi Kouamé Appolinaire and Touré Abdoulaye},
      title = {Substitution of Wheat Flour by Ginger Residue Flour in the Production of Bread},
      journal = {Bioprocess Engineering},
      volume = {7},
      number = {2},
      pages = {32-36},
      doi = {10.11648/j.be.20230702.11},
      url = {https://doi.org/10.11648/j.be.20230702.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.be.20230702.11},
      abstract = {In developing countries, bread is a commodity inaccessible to the most vulnerable populations. This inaccessibility worsened with the war in Ukraine leading to an increase in the price of wheat on the world market. This study was carried out with the aim of valuing the residue of ginger in partial substitution of wheat flour by that of ginger in the manufacture of bread in order to reduce the cost of bread. The residues were obtained after grinding the ginger then maceration in water and at the end of filtration of the macerate. The residue obtained is dried at 60°C. for 24 hours then ground and packaged in a plastic bowl. The formulation was made by mixing 5 g of residue flour with 95 g of wheat flour. The physicochemical and functional properties of the flours were determined followed by the sensory evaluation of the breads produced. Substitution of 5% wheat flour resulted in reduced moisture (11.15%) and improved fiber content (5.15%). Regarding functional properties, the ginger residue resulted in an increase in water absorption capacity (128.21%) and swelling capacity (12.66 g/g). The sensory evaluation showed that the sweet bread produced with the ginger residue was the most appreciated. This study suggests that ginger residues could be valorized in the production of sweet bread.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Substitution of Wheat Flour by Ginger Residue Flour in the Production of Bread
    AU  - Zoro Armel Fabrice
    AU  - Miézan Bilé Aka Patrice
    AU  - Kouassi Kouamé Appolinaire
    AU  - Touré Abdoulaye
    Y1  - 2023/10/08
    PY  - 2023
    N1  - https://doi.org/10.11648/j.be.20230702.11
    DO  - 10.11648/j.be.20230702.11
    T2  - Bioprocess Engineering
    JF  - Bioprocess Engineering
    JO  - Bioprocess Engineering
    SP  - 32
    EP  - 36
    PB  - Science Publishing Group
    SN  - 2578-8701
    UR  - https://doi.org/10.11648/j.be.20230702.11
    AB  - In developing countries, bread is a commodity inaccessible to the most vulnerable populations. This inaccessibility worsened with the war in Ukraine leading to an increase in the price of wheat on the world market. This study was carried out with the aim of valuing the residue of ginger in partial substitution of wheat flour by that of ginger in the manufacture of bread in order to reduce the cost of bread. The residues were obtained after grinding the ginger then maceration in water and at the end of filtration of the macerate. The residue obtained is dried at 60°C. for 24 hours then ground and packaged in a plastic bowl. The formulation was made by mixing 5 g of residue flour with 95 g of wheat flour. The physicochemical and functional properties of the flours were determined followed by the sensory evaluation of the breads produced. Substitution of 5% wheat flour resulted in reduced moisture (11.15%) and improved fiber content (5.15%). Regarding functional properties, the ginger residue resulted in an increase in water absorption capacity (128.21%) and swelling capacity (12.66 g/g). The sensory evaluation showed that the sweet bread produced with the ginger residue was the most appreciated. This study suggests that ginger residues could be valorized in the production of sweet bread.
    VL  - 7
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Biotechnology Laboratory and Agroressources Valorization and Natural Substances, Biological Sciences Faculty, Peleforo Gon Coulibaly University, Korhogo, Ivory Coast

  • Biotechnology Laboratory and Agroressources Valorization and Natural Substances, Biological Sciences Faculty, Peleforo Gon Coulibaly University, Korhogo, Ivory Coast

  • Biotechnology Laboratory and Agroressources Valorization and Natural Substances, Biological Sciences Faculty, Peleforo Gon Coulibaly University, Korhogo, Ivory Coast

  • Biotechnology Laboratory and Agroressources Valorization and Natural Substances, Biological Sciences Faculty, Peleforo Gon Coulibaly University, Korhogo, Ivory Coast

  • Sections