American Association for Cancer Research
Browse

Data from The Inhibitory NKR-P1B:Clr-b Recognition Axis Facilitates Detection of Oncogenic Transformation and Cancer Immunosurveillance

Posted on 2023-03-31 - 01:21
Abstract

Natural killer (NK) cells express receptors specific for MHC class I (MHC-I) molecules involved in “missing-self” recognition of cancer and virus-infected cells. Here we elucidate the role of MHC-I-independent NKR-P1B:Clr-b interactions in the detection of oncogenic transformation by NK cells. Ras oncogene overexpression was found to promote a real-time loss of Clr-b on mouse fibroblasts and leukemia cells, mediated in part via the Raf/MEK/ERK and PI3K pathways. Ras-driven Clr-b downregulation occurred at the level of the Clrb (Clec2d) promoter, nascent Clr-b transcripts, and cell surface Clr-b protein, in turn promoting missing-self recognition via the NKR-P1B inhibitory receptor. Both Ras- and c-Myc–mediated Clr-b loss selectively augmented cytotoxicity of oncogene-transformed leukemia cells by NKR-P1B+ NK cells in vitro and enhanced rejection by WT mice in vivo. Interestingly, genetic ablation of either one (Clr-b+/−) or two Clr-b alleles (Clr-b−/−) enhanced survival of Eμ-cMyc transgenic mice in a primary lymphoma model despite preferential rejection of Clr-b−/− hematopoietic cells previously observed following adoptive transfer into naïve wild-type mice in vivo. Collectively, these findings suggest that the inhibitory NKR-P1B:Clr-b axis plays a beneficial role in innate detection of oncogenic transformation via NK-cell–mediated cancer immune surveillance, in addition to a pathologic role in the immune escape of primary lymphoma cells in Eμ-cMyc mice in vivo. These results provide a model for the human NKR-P1A:LLT1 system in cancer immunosurveillance in patients with lymphoma and suggest it may represent a target for immune checkpoint therapy.

Significance: A mouse model shows that an MHC-independent NK-cell recognition axis enables the detection of leukemia cells, with implications for a novel immune checkpoint therapy target in human lymphoma. Cancer Res; 78(13); 3589–603. ©2018 AACR.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

FUNDING

University of Toronto

Natural Sciences and Engineering Research Council of Canada

Ontario Graduate Scholarships

Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Disease Award

Canadian Institutes of Health Research (CIHR)

SHARE

email
need help?