American Association for Cancer Research
Browse

Data from PET Imaging of Tumor Neovascularization in a Transgenic Mouse Model with a Novel 64Cu-DOTA-Knottin Peptide

Posted on 2023-03-30 - 19:44
Abstract

Due to the high mortality of lung cancer, there is a critical need to develop diagnostic procedures enabling early detection of the disease while at a curable stage. Targeted molecular imaging builds on the positive attributes of positron emission tomography/computed tomography (PET/CT) to allow for a noninvasive detection and characterization of smaller lung nodules, thus increasing the chances of positive treatment outcome. In this study, we investigate the ability to characterize lung tumors that spontaneously arise in a transgenic mouse model. The tumors are first identified with small animal CT followed by characterization with the use of small animal PET with a novel 64Cu–1,4,7,10-tetra-azacylododecane-N,N′,N′′,N′′′-tetraacetic acid (DOTA)–knottin peptide that targets integrins upregulated during angiogenesis on the tumor associated neovasculature. The imaging results obtained with the knottin peptide are compared with standard 18F-fluorodeoxyglucose (FDG) PET small animal imaging. Lung nodules as small as 3 mm in diameter were successfully identified in the transgenic mice by small animal CT, and both 64Cu-DOTA-knottin 2.5F and FDG were able to differentiate lung nodules from the surrounding tissues. Uptake and retention of the 64Cu-DOTA-knottin 2.5F tracer in the lung tumors combined with a low background in the thorax resulted in a statistically higher tumor to background (normal lung) ratio compared with FDG (6.01 ± 0.61 versus 4.36 ± 0.68; P < 0.05). Ex vivo biodistribution showed 64Cu-DOTA-knottin 2.5F to have a fast renal clearance combined with low nonspecific accumulation in the thorax. Collectively, these results show 64Cu-DOTA-knottin 2.5F to be a promising candidate for clinical translation for earlier detection and improved characterization of lung cancer. Cancer Res; 70(22); 9022–30. ©2010 AACR.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Cancer Research

AUTHORS (11)

Carsten H. Nielsen
Richard H. Kimura
Nadia Withofs
Phuoc T. Tran
Zheng Miao
Jennifer R. Cochran
Zhen Cheng
Dean Felsher
Andreas Kjær
Juergen K. Willmann
Sanjiv S. Gambhir
need help?